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We study aspects of the space-time singularity structure of several classes of causal distributions,
including the cases usually encountered in perturbation theory. Various definitions of restricted equal-
time limit are considered which allow for the presence of highly singular Schwinger terms. It is shown
that, with one definition, every causal distribution has a restricted equal-time limit. A form of sum rule
valid even in the presence of singular Schwinger terms is given.

1. INTRODUCTION

The e.t. (equal-time) limits of matrix elements of
current commutators continue to be of interest from
the viewpoint of current algebra. In the simplest case
of a vacuum-to-vacuum matrix element

C) = Ol [1.4(x/2), je(—x/2)110),
one has available the Kéllén-Lehmann representation

Clx) = f dap(a)A(x; a). 1.1

A discussion of the e.t. limit of (1.1) (with A replaced
by 0,A) has been given by Brandt.! In the present
paper we introduce a technique which enables us to
exhibit explicitly the space-time singularity structure
of C(x) for a large class of spectral functions; the
question of e.t. limits can then be discussed more
directly. We also consider various definitions of such
limits and the derivation of sum rules when Schwinger
terms are present, i.e., when the e.t. limit exists only
in a restricted sense, made precise below.

In Sec. ITIA we show how any C(x) of the form (1.1},
with p(a) a tempered distribution, may be written as
a multiple derivative of an ordinary function of x
defined by an integral having the form of a Fourier-
Bessel transform. These integrals are evaluated for
two classes of spectral functions p(a): The first class
shows how nonintegrable p(a) can lead to C(x) which
vanish in an arbitrarily large neighborhood of the
t = 0 hyperplane; this example is used later to cast
light on the difference between various definitions of
e.t. limit.1~* The second class incorporates all the cases
encountered in perturbation theoretic calculations of
spectral functions. In Sec. IIB, a generalization to the
case of a Jost-Lehmann-Dyson representation is given.

In Sec. ITI we develop techniques and formulas for
carrying out the needed distribution theoretic differ-

entiations; the results are summarized in Tables I
and II. The use of these tables isillustrated by examples
from quantum electrodynamics.

In Sec. IV various definitions of e.t. limit are con-
sidered; it is emphasized that a sharp definition of
Schwinger terms may be given in terms of the concept
of restricted e.t. limit, in which the limit is defined
only on a subspace of 8(R;). It is shown that every
causal distribution has at least a restricted e.t. limit,
in the sense of one of the definitions.

Concluding remarks concerned with the derivation
of sum rules in the presence of Schwinger terms are
contained in Sec. V.

A word about notation: If D is a distribution, D(x)
the associated generalized function, and wu(x) a test
function, we shall often indicate the action of D on u
by placing D(x) in boldface square brackets and u(x)
in boldface round brackets to the right, thus:

[D1() = [DG)I(x)) = f dx D(e)u(x).

2. DISTRIBUTIONS DEFINED BY SPECTRAL
REPRESENTATIONS

A. Kiillén-Lehmann Representation

The mathematical basis for this section is pro-
vided by the following relation:

Identity: Let A(x; a) be the usual causal solution
of the homogeneous, mass-a? Klein-Gordon equation.
Let d, denote a differentiation operator or 1, and let
p(a) be a tempered distribution. Then, when b is not
in the support of p(a), we have

f dap(a)d A(x; a)

= d 0 + by j dap(a)b — ay"A(x; @). (2.1)
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Proof: Let u(x) be a test function. Using (O + a) X
A(x; a) = 0, we have®

[ f dap(a)d, Ax; a)](u)
= f dap(a){[d,A(x; a))(w)

- f dap(a)(b — a)y"[AGx; A)l(£d(T + b)"(w))
- [ f dap(a)(b — ay"A(x; a)](:l:d,,([] + BY"(w))
= [a@+br f dapla)(b ~ a)"Bx; ) [,

Equation (2.1) may be used to obtain explicit
expressions for distributions specified by Killén—
Lehmann spectral functions. Suppose, for simplicity,
that p(z) vanishes for a < 0 and that d, = 1. Then
(2.1) (for n > 1) becomes®

f dap(a)A(x; a)

= -or| daa~"p(@)] (5 )“"‘2”""J{< )*1]
2.2)

Although the integrals (2.2) are to be interpreted in
the sense of distribution theory, it can be shown that
if p(a) is a function, the integral on the right-hand side
of (2.2) may be interpreted, for each x, as an ordinary
Lebesgue integral, provided that it converges for large
a. Since p(a) is tempered, one can always choose n
sufficiently large to ensure convergence and perform
the differentiation after the integration.

This procedure may be used to convert any spectral
integral to a classical integral, since any tempered
distribution p(@) may be expressed in the form

i)"ﬁ(a),

where 5(a) is a continuous function. Then

p(a) = (-—

Jda p(a)A(x; a)

(O +b)" f dap(a)(b — a)-m[(—;—a)" Ax; a):l.
@r)

The use of 5 permits integration over singularities in
p(a) occurring at finite values of a; the factor (b — a)™™
forces convergence of the integral at infinity.
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As an illustration of the use of (2.1), consider the
class of spectral functions p(a) = a* sin (a2p)6(a),
with « a nonnegative integer. Let

E(x; , B) = f " daa* sin (Bya)A(x; @), (2.3)
0
Then, using (2.2), we have

E(x; %, B)
= (— D)"+lfwda

(]

( o e(xoz0(;€2) Jy(ax?) L By a)

_ (_D).‘H[e(xo)e(xg)e(x* - £) ) -

277(362 — 52)§ x2
A remarkable feature of this example is that the sup-
port of the distribution E(x; «, §) excludes the hyper-
plane 7= 0. Thus, there exist distributions, all
derivatives of which have well-defined e.t. limits (in
a sense to be defined in Sec. 3), for which the corre-
sponding spectral functions are nonintegrable ordinary
functions.

We turn now to another class of spectral functions,
which covers most of the examples known from
perturbation theory. Consider p(a) = 6(a — b)a* X
(log b~'a)*, with b > 0 and « a nonnegative integer.
Again using (2.1), one finds

E(x;a, b, «) =fwdaa°‘[log (ab™HFA(x; a)
b

[

= (—D)n I(x’ n, «, «, b))9

(2.4)
where, with 4 = a/b,

I(x;n, o, x, b)

ba—n+2 a—-n+§

® a—n+2,_a—n+}
N x 2 %
=—| dp——5—
_[ dn ) (log ) J1(nxD)
© n

=—| d

J (o)t

© _ 2pyEr142s
9 J " s D= xB) T

27il'(s 4+ 2)

(logn)*

—100

(The last equality is the Mellin-Barnes identity for
the Bessel function J;. The path of integration in s
passes just to the left of the origin.)

Now pick n > a« + 2, so that the last integral exists
over the real (is, n) plane and also over dn for each
fixed s. Using the Fubini theorem to invert the order
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of integration, we obtain

I(x;n,a, x, b)

_ _J'iaodsl"(_s)(%bx2)su—n+2
B 4inl'(s + 2)

I(s,n, o, 1, b), (2.5)

—700

where

I(s,n,a, k) = j dyy "1 (log )"
1

2]
— f dye(a—n+s+2)uyx
]

«!
(n—a—s— 25"

I(s, n, o, «) is evaluated for s purely imaginary; the
resulting function is then analytically continued into
the right half s plane. [The poles of I(s, n, «, ) are
ultimately responsible for Schwinger terms, as we
shall see.]

Finally, the integral over s may be performed by
closing the contour at infinity in the right half s plane
and evaluating the residues. (The new arc contributes
nothing to the integral, for the magnitude of the new
integrand is strictly less than that occurring in the
original Mellin-Barnes identity.) Summarizing the
results of these integrations, we have

E(x;a, k, b) = —(—0O)" (e(xo)ﬂ(x )

I(x; o, «, b, n))
(2.6)

where, in the case of no overlap between the poles of
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P(—s)and (n — o — 5 — 2)~*1,
I(x;«, x, b,n)
] © — 2\ mpa—n-+2
K (=4bx) +h
2 oy mU(m 4+ DI (n — & — m — 2+
with m# n—u—2

=S ba_mi[(as) P(F<:)f bz);)s] et

If « is an integer, the poles overlap and

-1 a x+1
e 1)[ (3_s)
9 ((s = DI'(s — l)(%bxz)s)] .
L(s +2) s=l=n—a—2
These formulas are summarized in Table I.

B. JLD Representation

To analyze the general matrix element of a current
commutator, it is convenient to use the Jost-Lehmann~
Dyson (JLD) representation. The techniques of the
preceding subsections may be easily generalized to
cover a large class of JLD spectral functions.

We note that if one takes the Fourier transform of
the usual momentum space JLD representation, one
obtains, through formal convolution (see, however,
Sec. 5 for critical remarks on this procedure) a repre-
sentation of the form

D(x) = (a] [j4(3x), j(—3x)]1b)
- f dM2p(x; MBA(x; M).

TasLs I. Spectral functions and corresponding distributions as derivatives of ordinary functions.

Spectral function
pla)

Distribution E(x) = [ dap(@)A(x; o)

0(a)a* sin (B+/a) E(x; x, ) = —(‘—EI)"“(

€(xo)0(x?
2mr(xt — ﬁa)i X2 ’

_ﬂz)ﬁ) k>0

0(a — b)aw(log %)k E(x; o, k,b) = —(— D)"(

I(x; «, &, b, m) = h(x; @, x, b, 1) + $T(k) ﬁ
m=0,1

h(x; o, k,b,n) = 2

s(x.,)o(x*))
47

(—-)Kb“""‘*‘z

Ix,o0,x,b,n), n>1,n>a+2

(—1bx2)ympo—n+
mltm4+ DV (n— o — m— 2)x+t
mER—x—2

Z}K—) [(%)K(F(I‘;(:)(-l%)n—).)] 8=n—g—2% integer

or

ol (e

I =n— o —2 = integer
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Assuming for simplicity that supp p excludes the
point M% =0 and applying the identity (2.1) with
d, = 1, we obtain the relation

D(x) = J dM®p(x; M3 (—MH™"O"A(x; M?)
or, on integration by parts,
: AYPIRY
D) =3 3 gl }) @)
f AM¥(—= MY "[3%* p(x; MDD Ax; MY).

This can be repeated until all the powers of O are
removed. Now note that if p(x; M?) is smooth in M?
and, together with its derivatives with respect to x, is
polynomially bounded in M2, one may evaluate the
integrals classically, as in 2A by taking » large enough,
and the differentiations may be performed afterwards.
We now turn to the problems encountered in calcu-
lating such derivatives.

3. DIFFERENTIATION OF CAUSAL LORENTZ
INVARIANT DISTRIBUTIONS

A. Computations

In the preceding section, we expressed several distri-
butions as derivatives of functions. The present
section is devoted to explicitly calculating relevant
(distribution-theoretic) derivatives. We begin with
two simple examples.

Example 1:
O [e(x0)0(x®)] = 4e(x0)d(x?). G.0)

Proof: Let u = u(t,r, Q) bea test: function. By
definition,

[De(x0)0(x*)1(w)
0 | ¢t
= f_ dte(t) fo rdr f dQ(au)(t, r, Q).

Now we take u to be a product test function:-

u(t, r, Q) = v(t)w(r, Q). (This involves no loss of
generality—to show that two distributions agree,
it is sufficient to show th:t they agree on a dense
subspace of test functions, such as the linear span of
analytic product functions.) Let w(r, Q) be expanded
in spherical harmonics. Only the spherical symmetric
part remains after the integration over angles; let
this part be denoted w(r). We have, on integration
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by parts,
[Oe(x)0(x*) 1 (W(r))
= 4 f o) d%DI(L; w) — DIt Vi),

where
It
I(t;w) =f r*w(r) dr

0
and .

It

I(t; Viw) = f s dlrw) dr.

Now °

die(DI(t; w)] = 2tw([t]) + £w'(j1])e(r)
and (integrating twice by parts)

e(DI(t, Viw) = 2w'([t)e(t).
Thus (DI(t, Viw) = *w'([t])e(t)

[3e(ro) 0 T(EWr))
= 8n f " atleyw)]

- 4f dtv(t)e(t)f r*dr fdg(a(lgll t|

= 4[e(xo)3(x)(w()w(r)),

2

and so
Ofe(x0)8(x")] = 4e(x0)8(x%).

Example 2:
Ole(xe)8(x*)] = 0.
Proof: With conventions as above,
[De(xe)d(*)1(DIW(r))
= 87 f At diw((t]) — 10 dw), )

=0,

This second identity may be obtained formally by
applying the operator 0O = (df — r7ld?) to the
object

(3.2)

8(2 — 1) = te(t)r-18(lt] — r).

Such formal manipulations are suspect; a formal
calculation of (d2 — r~1d?r)[4t=26(Jt| — r)] yields the
nonsensical answer t=33(f — r).

The relation
Ofe(x0)0(x®)(x®)"] = 4n(n + 2)e(xx)0(xH)(x?)" 1,
n>1, (3.3)

may be verified by techniques similar to those above.
The following trick is useful for differentiating more
complicated distributions.
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Trick: Consider the generalized function I(f)
defined, for ¢ > 0, by

1) = _[) ' f(t, ¥) dr =lim o f(t,r)dr,

€=0+ JO

where f(¢, r) is smooth and finite except possibly at
r=t. [As a function of the variables r + ¢, f may
have an integrable singularity in the variable r — ¢,
as does the function f(r,t) =log (¢t —r).] Then,
assuming for simplicity that f(¢, 0) = 0 and using a
comma to indicate differentiation, we have

d,I(t) = L (fe+ £ dr, (3.4)

although f, and f, may be separately nonintegrable
nearr = t.

Proof: Recall that the derivative of a limit of distri-
butions is the limit of differentiated distributions. Then

t—€
d (1) =limd, f £, r)dr
0

€0,

=1lim [( fo T dr) + [t t - e):l

€04

=1lim ( OH( fotfn dr),

€0,

which proves (3.4).

This trick may be used to obtain a fairly explicit
general expression for distributions of the form

O [e(xo)0(x®) f (xD)]:
[De(x)0(x) £ (x*)1(1)
- f_ Zdte(t) L “ar f AQaru(|t] — rYf”
+ 40%u) (It — NS + 2(rw) . f], (3.5)

where primes denote differentiation of a function with
respect to its argument.

Proof: Let u(x) = v(t)w(r, Q). Then
[Qe(x)0(x") f(x)NAt)w(r, Q)
= [ o165 rw) = o015 (), 1),

where
I(t; rw) = f Q f “ofrw) dr.

Noting that 1(0; rw) = I ,(0; rw) = 0, we get, on
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integration by parts,
[Oe(x0)0(x) f(x*)H(O)w(r))

= [ty {Lates o) = 115 ),
Now let

g(t,r) = f dQf(* — r*)(r'w)
so that

I(t; rw) =f“|g(t, r)dr,
)

and apply the trick twice to calculate I ,:
1t
I, =J; (8rr + 28,0+ g ) dr

el
= L dr J dQrw(|t| — " + 4(tl — (), f’
+ 2(rw), . f + (rw), . (r)].

The integral of the last term in the integrand is just
I[t; (rw) ,,), and thus

Le(xo)00x*) f (X)) (E)w(r, Q)
- f " dto(t)e(t) f iQ L " araetwye = i
+ 40,1t = Nf' + 2rw),.f)
which is equivalent to (3.5) for u = v(t)w(r, Q).
We conclude this section by calculating
0" [e(xe)0(x®) log x2].
We begin by substituting f(x2) = log x* into the gen-

eral expression above and obtain, for n = 1,

[Oe(x0)0(x*) log x*Y(u) =fwdte(t)l(t; u), (3.6
where o
4riu 4(ru),,

J¢]
I(t;0) = |dQ} dr|—
) f f r( W+ G+ n

+ 2(ru) , log (* — rz)). (3.6")

A fairly tedious calculation which consists in applying
the trick several times to the above expression yields?

[O%e(xe)8(x*) log x*1(u)
= 4f_id‘[“(" [P + ety 4 1D], (3.7)

where
u(t, r) =fdQu(t, r, Q).

This expression, together with Table I, will be used
to derive the Schwinger terms in second-order
quantum electrodynamics.



3312

Equation (3.6) may be rewritten in manifestly
covariant form. In order to motivate the definitions
to come, recall the formulas for 1-dimensional
distributions

S[f(&] = [f' (9§ — &),

where £, is a zero of f(£), and

(3.8a)

SLFO)] = [f’(E)]‘l(— d% [f'(E)rl)"a(s — &),
(3.8b)

valid when f(£) is monotonic increasing and appro-
priately differentiable. In particular, taking f = x* =
t? — r? and viewing 6'(12 — r?) as a t-parametrized
family of distributions acting on functions of r, we
find

[8'(e* — r)] = r=28(lt] — r) — &r=*d,0(I¢| — 1).

For fixed 7 # 0, acting on a test function w(r)
(remembering the r2 factor of integration), we see that
this gives

[ — r)I(r)
© 1 1
- f drr2[4—r3 it = 1) = 25 4,1 - r)](w(r»

4 ()

_ Iw(t)
ar* 2

+wIt) =
2 11l w, (1)

r=|t]|
Thus, we define the 4-dimensional distribution

€(x,)d'(x?) by its action on a test function u(t, r, )
via

[e(xa)8 ()1 w)
=1 f " atlu(t, 11DPE) + <o (6 1), (3.9)
where

w(t, r) = f aQu(t, r, Q).

[Acting on product test functions v(f)w(r) with
v(0) = 0, this agrees with the ¢-parametrized inter-
pretation above—thus the definition is reasonable.
It is the handling of the singularity at = 0 which is
a matter of definition.] On comparing (3.7) and (3.9),
we arrive at the manifestly covariant expression

O2[e(x)0(x?) log x*] = 16€(xo)d'(x2). (3.10)

Similarly, viewing 8(™(r® — r?) as a ¢-parametrized
family of distributions, we find, acting on a test
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function w(r),

ot = e = (1) (3)

r=[¢|

Thus

a8 — r*)w(r)]

= (dr)2(drz)n(%rw),r=t

= [2d,s + 4r*(d,)")dp)"GrW)] o o1
and

[V[8'(* — r)11(w)

d n
= (;r—) AW,y

= (dr2)"(2dr2 + 4r2d7‘22)(%rw),r=t ’
which implies

(08 — r¥)1(w(r))
= di[0'"(* — Aw) — [V — r¥)1(w)
= 4r’d? — dirtdR)(Erw)|,..
= —4ndF ' (3rw)|,-
= —4n[6" V(1% — rA)1(w(r)).

This makes reasonable the inductive definition (for
4-dimensional distributions now)

€(xg)0 " (x%) = —(4n)'De(x)0(x%), n <1,

(3.11)
with which we have

O"e(x0)0(x?) log x2 = (—4)"(n — 2)! e(x)0"1(x2),
n>2 (3.12)

The formulas derived in this section are summarized

in Table II.
B. Use of Tables I and II

By combining the second entry of Table I with the
formulas of Table II, one is able to analyze in detail
the strongest e.t. singularities of any Kéllén-Lehmann
spectral representation for which the weight function
behaves asymptotically like a polynomial in loga
and fractional powers of a. (This covers all known
cases in perturbation theory.) The idea is to subtract
out the polynomial and use the tables to analyze its
contribution. The remainder, corresponding to an
integrable spectral function, has the e.t. behavior
of the integrand. The work is greatly simplified by
the observation that only the lowest fractional or
logarithmic power of x? is important.

As an explicit example, consider the vacuum
expectation values of current commutators in scalar
and spinor electrodynamics, with

Cpp = OI [j,3%), j,(32)]10)-
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TABLE II.

a. Various explicit distribution theoretic derivatives.

(1) DOle(xo)0(x*)(x*)"] = 4n(n + De(xo)0(x*)(x?)",

n>1

(2)  DleCxo)f(x?)(x*) (log x*)™] = 4e(x0)0(x*)(x?)"~
% [a(n + D(log x®)™ + 2n + 1)m(log x*)™! 4+ m(m — 1)(log x?)"~?],

n>1,m>0

()  Ole(xo)8(x®)] = 4e(x)0(x?)
4) Ole(xe)0(x»)] =0

(5) O"[e(x)0(x*) log x*] = (—4)*(n — 2)! e(x)6™ 1 (x7),
(6) Ole(x)d™(x*)] = —4dne(x)0"+1(x?)

n>2

b. Distributions acting on the test function # = u(x) = u(s, r, Q).

(1) [e(x)f(x3)f (x))(w) = f jowdts(t) ( 0'" r? dr J'dQuf(xz)

(f integrable)

@ (P01 = [t [dQbutr, el )

@) [e(x)d (HIW) = } f ? f dQu(t, |t], QP + (D, (1, |¢], Q)]

@ [Ce(x)b(x*) log x*1(u) = f ? de(®I(t]; ),

where
4 4(rw).,
I(t}; w) =J.dﬂfo“|dr(— T ’:i_”r)z (|t(|r -’Il-)‘r) + 2(ru),, log (1* — rﬁ))
In the scalar case one has then finds

_ i
, =
A P

C f daa‘%(a - 4m2)'3-r
Am?

X (guv - a—law an)A(x a) + O( )

and in the spinor case’ one has

20-bya — am)?

uv
1277'
X (guv - lazuazv)A(x; a) + 0(84)-
From Table I we find

e ? —d_;l_ [e(x0)0(x?) log x2 + O(x})]. (3.13)

Using Table II, we note
0% [e(x0)0(x2) log x2] ~ €(x,)d"(x?).

Let u = v(t)w(x) be a testing function for which
r2d.w(x) is finite for r — 0. Then

Cok(x)

[Cui10) e o ),
where, with w, = | (9w/ox,),_, dQ,

W ((2) — wallt)
1t 12

After a calculation similar to one done in Ref. 3, one

h(t; w) = + w0, Al2D).

h(0; w) = [—4V2d,0(x)1(w). (3.14)
Thus the restricted e.t. limit of Cy.(x) (see Sec. 4)
contains a Schwinger term (found in the spinor case
in Ref. 1) proportional to d,V2§(x). The coefficients
are (je*/12n%) and (ie®/48n?%) for spinor and scalar
electrodynamics, respectively. The result for the scalar
case was also derived in Ref. 3, using a different
method.

It should be emphasized that, although the distri-
bution d,V?0(x) can be extended (in a variety of ways)
to act on any w € 8(Ry), the limit of A(¢; w) as t — 0
does not exist unless w(x) is restricted as above.

4, EQUAL-TIME LIMITS AND
SCHWINGER TERMS

In this section we consider various definitions of
equal-time limits of 4-dimensional distributions D
and use examples from Sec. 1 to illustrate their
different features.

(1) If a distribution D(t) in a single variable ¢ is
equivalent to a continuous function /() in a neigh-
borhood N of the point ¢ = 0, then a natural definition
of the “equal time-limit” of D is simply the number
S (0). A generalization of this idea to a 4-dimensional
distribution D(x) = D(x;?) is readily available if D,
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when acting on product testing functions u(x) =
v(t)w(x) with supp v(t) = N, has the form

[DYOOW) = [drot0H(w; 0, (4D
with H a continuous function of fe N, for any
w € 8(R®). Also, if the map w — H(w; t) is a distribu-
tion for each t € N, then we define (DI):

[lim D]l(w) = H(w;0). 4.2)

t—~+0
When the conditions on H hold only for w(x) in a
proper subspace 8, < 8(R?%), §, consisting of testing
functions w(x) such that lim [r~"w(x)] as r >0 is
finite, we shall say that the corresponding map
w(x) — H(w; 0) is a restricted e.t. limit of D and
write (D1),:

[lim
-0

the bar and subscript indicating that the limit exists
only on the subspace §,. If n is the smallest positive
integer for which H exists, we refer to H as a Schwinger
term.

The techniques of Sec. 2 were developed with this
definition in mind—they enable one to compute the
continuous function H(w, r) explicitly. (Cf. Tables I
and IT and Sec. 3B.)

(2) It is clear that when a distribution D has a
restricted e.t. limit in the sense of definition (D1),,
then

D]l(w) = H(w, 0), 4.3)

n

lim 4.4)
=0

D] W) = lim D[y, (w(x)]
n 1 m-— o

for every sequence v,,(t)— 6(t) in Cj. (Cy is the
space of continuous function on N and prime denotes
dual) This property may be used as a definition:
Suppose that a distribution D has the property that
there exists a neighborhood N of the origin f = 0 such
that, for each sequence of testing functions v,,(t) — 8(1)
with support v,,(f) < N, lim [D(v,,()w(x))] as m — oo
exists and defines a linear functional on §,, inde-
pendent of sequence taken. We may then define (D2),:

[lim
t=—0

It has been shown’ that if a distribution has an
e.t. limit in the sense of (D2),,, then it may be repre-
sented by a continuous function in the sense of (D1),,.
Thus definition (D2), , which might appear to have
wider applicability, is in fact equivalent to (D1),,.

4.5)

D] W(x)) = tim Do, (Hw)].

m-* o
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A stronger requirement than that occurring in
definition (D2), namely that the right-hand side of
(4.5) exists and is sequence independent for N =
(— o0, 00), has been considered in the literature.! With
such a modified definition (D2’), the existence of an
equal-time limit is determined by the (Lebesgue)
integrability of the spectral function in the case of a
Killén-Lehmann representation. However, as the
first example of Sec. 2 shows, there are distributions
with nonintegrable spectral weights which vanish in
a neighborhood of ¢ = 0 and hence have well-defined
equal-time limits (zero) in the sense (D2), but not
in the sense (D2). This is because E(x; «, f) [Eq.
(1.3)] has strong singularities at points ¢ % 0 and
sequences {v,,(¢)} which tend to 4(¢) in 8'(R) may be
contrived so as to pick up contributions from these
singularities. Thus the definition (D2’), unlike (D2),
does not have a purely local character.

(3) The range of applicability of (D2) may be
extended by placing additional restrictions on the
class of sequences considered. One might require
that the supports shrink to zero, as in the following
definition,? using a dilatation sequence. Let v(¢) be a
testing function with the properties support v <
(=1,1) and [o(r)dt =1, and let v,(t) = mo(mt).
Then, if a distribution D is such that lim [ D(v,,(t)w(x))]
exists, is independent of the choice of v, and defines a
linear functional on §,, we may define a restricted e.t.
limit by (D3),.:

[lim
t-0

It is not difficult to find distributions which have
e.t. limits in the sense of (D3), but not in the sense of
(D1) or (D2). For example, let

D] (w(x)) = lim D[mv(mi)w(x)]. (4.6)

D(x) = 3126t — n)d(x — 1),

Moreover, under (D3), unlike under (D1) or (D2),
the following theorem holds®.

Theorem: Every causal distribution has a restricted
e.t. limit, in the sense of (D3),,.

Proof: The symbolic function D(x) associated with
a tempered distribution D may be written in the form
D(x) = 9"F(x), where F(x) is a continuous function
and ¢* is a product of partial derivatives, i.e., 0* =

3, (0foxh)e.

Let A(x) be a test function in 8(3), withsupp h <
{x|x| <2} and h(x) =1 for |x| < . Since D is
causal and supp v € (—1, 1), D gives the same result
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acting on [v,()w(x)}A(m) as on v, (mt)w(x). Thus,
with |k| = Y k,,

[D)(mu(mi)w(x))

= (—1)“"ﬂdx dtF(x, H)d*mu(mOh(mx)w(x) (4.7)

= (— 1)"‘|m"“3ffdx th(r—’:l- , -ri-l)a"v(t)h(x)W(i) ,
(4.8)

where, to obtain the second line, we have introduced
new variables x’ = mx, t' = mt and then dropped
the primes. If we choose w(x)€ §,(3), then the
integral in (4.8) will be of order m™ for large m,
since the integration is over a compact set and F is
continuous. Hence, the rhs of (4.7) will tend to zero
as m— o, for n > k — 2. It follows that D has
at least a restricted e.t. limit (equal to zero) of index
k—2.

We now prove a fact which is intuitively obvious—
that, if D is a causal distribution (i.e., vanishes outside
the light cone) and has a restricted e.t. limit, then the
support of the restricted limit must consist of the
origin alone. The proof is in terms of definition (D1);
analogous proofs hold for the other definitions.

Proof: Suppose that a point X = b 5 0 is in the
support of (lim,_ |, D). Let N, = {x||x —b| <
1 1b|}. Let H(w; ¢) be the continuous function and N
the neighborhood of ¢ =0, corresponding to D.
Since b is in the support of the restricted limit of D,
there exists a test function w,(x) with support con-
tained in N, (thus w, is in §, for each n) such that
H(w,; 0) # 0. Since H(w,; t) is a continuous function
of tin N, there exists a neighborhood T, of # = 0 such
that H(w,; ) > 0 for ¢ in T,. Let v,(¢) be a positive
test function with support contained in N N T, N
(—115], 1 18]). Then v,(t)w,(x) is a test function in
8(R*) with support outside the light cone, and

[DIm0) = [drusHOny; ) 7 0.
This contradicts the assumption that D is causal.

Since a distribution with support consisting of a
single point may be expressed as a finite sum of
derivatives of delta functions, the e.t. limit of a causal
distribution may be written

[lti_rg D] = goa,,a:a(x), (4.9)
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where the a, are constants, provided that the un-
restricted (n = 0) e.t. limit exists.

5. CONCLUDING REMARKS

In conclusion we make a number of remarks
related to the content of the preceding sections.

A. Failure of Convolution Assumption

In the derivation of sum rules in current algebra,
one often uses the procedure of multiplying by d(¢) a
current-commutator matrix element

Cx) = (al [fa(x), jo(—=$1 |B)

followed by Fourier transformation of the product,
using ‘“‘the convolution theorem” to compute the
transform.®

To see the danger of this procedure, let us apply it
to the distribution (0/81)E(x), where E(x) is defined
by Eq. (2.3), with, say, k = § = 1, so that

E(x) = J;wdaa(a)A(x; a)

with o(a) = a sin \/a. Since, according to (2.3'), the
support of E(x) and hence of 0,E(x) excludes the
interval —1 < ¢ <1, we have §(¢)0,E(x) = 0. On
the other hand, the Fourier transformation of 9,E(x)
is ie(kkyo(k: — k?) so that a formal application of
the convolution theorem would give

0= f dk kg o(ki: — k) = 2 f dao(a).

However, § daa(a) is not well defined because o(a) is
not integrable to infinity.

The source of this difficulty is that the usual con-
volution theorems do not apply to arbitrary pairs of
distributions, even when they can be multiplied, as
for the case at hand. A generalization of the concept
of convolution which covers such cases is possible
and will be discussed elsewhere.

B. Sum Rules in the Presence of Schwinger Terms

If the unrestricted e.t. limit of C(x) exists, we may
write, using (4.9),

C(x,0) =3 a,070(x) 5.1)
so that the procedure described above yields
f dkoCk, ko) = 3 a,(—ik)" (.2)

with an obvious symbolic notation. If only a restricted
e.t. limit exists, then P(x)C(x), where P is a suitable
polynomial in the components x* of x, will have an



3316 P. J. OTTERSON
e.t. limit, like the rhs of (5.1), so that multiplication
by d(¢),followed by Fourier transformations, yields

f dkop(—ia—ak) Clk, k) = =3 a,(~k)". (53)

Equation (5.3) constitutes a generalization of (5.2)
to the case when “real” Schwinger terms are present.

This is the case, for example, in photo-meson
scattering, with a g¢* strong interaction, where the
relevant e.t.c has a P(1/t) singularity in order g%?*’
It would be interesting to see whether such generalized
sum rules can be useful in the investigation of physical
scattering amplitudes.
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Given a Hermitian matrix that depends upon some parameter, one often wants to be able to find
all the parameter independent symmetries of the matrix. A method for accomplishing this is given here.
The only numerical procedure involved is the diagonalization of Hermitian matrices.

I. INTRODUCTION

Normally, in quantum mechanics, symmetry is
considered as something which is easy to find and
which, when it has been found, is used to simplify
the problem of diagonalizing the Hamiltonian. The
method to be suggested here is the opposite: First
diagonalize the Hamiltonian, and then use the results
of the diagonalization to find the symmetry. One
might wonder whether this can be of any use. The
answer is that if one can find all the symmetry by
just looking at the Hamiltonian, then one, of course,
does not need any numerical methods to find it. One
might, however, come across the situation where the
results of the diagonalization of the Hamiltonian
make one think that perhaps one has not found all
the symmetry. This is actually the usual reaction if
one finds degeneracy or violations of the noncrossing
rule. Since the knowledge of the symmetry often will
provide physical insight into the problem, and since
the symmetry, when it has once been found, might
be simple to verify and use in the solution of other
problems, one would in such situations like to have
a method which is more powerful than the trial and
error method for finding symmetry. It was actually
the occurrence of such a situation, when diagonal-
izing the Hubbard Hamiltonian for benzene,' that
caused the evolution of the method to be presented
in this article. It turned out to be a very useful tool in
the benzene case and to provide great help in pointing
the way to the right conjecture. It was even possible
to use the method to prove rigorously that there
was not any additional symmetry. Furthermore, the
method can be used not only to find rigorous sym-
metry, but also approximate symmetry, which in
turn could be used to find useful approximation
methods.

II. THE NECESSARY THEORY OF MATRICES

The discussion will be limited to Hermitian opera-
tors on a finite-dimensional space, since some of the
theorems to be used are not generally valid for opera-

tors in infinite dimensions. In any event, the subse-
quent algorithmic solution will apply only to finite
matrices.

The first step will be to state a set of definitions and
theorems on matrices which will be used in the
following. The theorems will not be proved, since
they are supposed to be either easy to look up in a
textbook or trivial to prove. Matrices will in general
be n x n. Capital letters will stand for matrices and
the corresponding small letter with two indices for
the elements of the matrix. I will be used for the
identity matrix. The superscript H will be used for
Hermitian conjugation.

Theorem I: Hermitian and unitary matrices can be
diagonalized by unitary transformations.

Theorem 2: Two diagonalizable matrices commute
iff they can be diagonalized with the same similarity
transformation.

Theorem 3: If A4 is any n X m matrix, then there
exist unitary matrices U (of size n x n) and W (of
size m X m) such that

UAWH = D, (1)
where D is a n X m matrix of the form
D, 0]
D = . 2
P ®

D, is a diagonal matrix whose diagonal elements are
the nonzero singular values of 4 (i.e., the square
root of the nonzero eigenvalues of A4 or AH4). U
can be found as the unitary transformation which
diagonalizes 44 (the nonzero eigenvalues being
ordered as in D,),

UAAHUH = D', 3

while W is the product of two unitary matrices, V'
and V,

W=V, (4)
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where V is the unitary transformation which diagonal-
izes A¥A (again with the same ordering of the non-
zero eigenvalues as in Dy):

VAHAVHE = D, (5)

The matrix V' is given as follows: Let C be the
matrix

C=UAVY = {f} 0}, 6)

0

where C; is a nonsingular matrix of the same dimen-
sion as D,. Then V' is the m X m matrix

—1
V/H — :Cl Dl O} (7)
0 0
The transformations U and W are unique except for

the following possibilities:

(1) U can be multiplied by any n X n unitary
transformation of the form

o o)
0 U
where / is of the same dimension as D, .

(2) W can be multiplied by any m X m unitary
transformation of the form

o wl

0 W,

where [ is of the same dimension as D, .
(3) If in D, some of the diagonal elements, say the

k first, are equal, then U and W can be multiplied
simultaneously by matrices of the form

(6
o I/
V, being any k-dimensional unitary transformation,

and the whole matrix being n X n when multiplied
with U and m x m when multiplied with W.

(®)

©®)

(10)

Definition 1: The graph G, corresponding to a
matrix A is defined as follows: Take n vertices num-
bered from 1 to n, and connect vertices j and k by a
bond, if |a;| + lax;] # 0. Two vertices will be con-
sidered connected if there exists a path in the graph
which connects them.

Definition 2: If all the vertices in the graph G4 are
connected, then A is nonreducible (nonreducible is the
same as irreducible for Hermitian matrices).
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Theorem 4: If a diagonal matrix commutes with a
nonreducible matrix, then the diagonal matrix is a
constant times the identity matrix.

Definition 3: The eigenspace of matrix 4 belonging
to an eigenvalue 4 is the set of all eigenvectors with
the eigenvalue 2.

Theorem 5: If the elements of a Hermitian matrix
are holomorphic functions of a real parameter, then
the eigenvalues are holomorphic functions of the
parameter, and the eigenvalues are either equal for
all values of the parameter or are at most equal at a
finite number of points in any finite interval of the
parameter.

III. DEFINITION OF SYMMETRY

The next step will be to investigate what it means
to find all the symmetry of a Hermitian matrix. The
following definition seems reasonably in agreement
with the normal use of the word when one does not
include antiunitary symmetry like time reversal.

Definition 4: Finding all the symmetry of a
Hermitian matrix means finding all unitary trans-
formations which leave it invariant.

This is, of course, equivalent to finding all the
unitary matrices which commute with the given
Hermitian matrix. This, however, has really no inde-
pendent interest, since one has the following theorem.

Theorem 6: Finding all the symmetry of a Hermitian
matrix is equivalent to finding all the eigenspaces of
the matrix.

Proof: Consider a representation in which the
Hermitian matrix is diagonal. Obviously, any change
of sign of any eigenvector and any permutation of
eigenvectors belonging to the same eigenspace are
unitary transformations which commute with the given
matrix. It is also obvious that knowing that these
unitary transformations commute with a given
matrix is enough to find the eigenspaces. QED

If, however, the Hermitian matrix depends on a
parameter, then it becomes interesting to find all the
symmetry, if it is defined as follows.

Definition 5: Finding all the symmetry of a matrix
which depends on a parameter means finding all
parameter-independent unitary transformations which
leave the matrix invariant for all values of the
parameter.
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From Theorem 2 one easily deduces the following.

Theorem 7: Finding all the symmetry of a matrix,
which depends on a parameter, is equivalent to
finding the subspaces which are invariant subspaces
independent of the parameter.

IV. FINDING THE SYMMETRY IN THE CASE
OF NO DEGENERATION

The problem in the remaining part of this article is
how to find these invariant subspaces for a Hermitian
matrix H(p). Such a matrix can be written as

(1n

where the functions f(p),fa(p), """, fa(p) are real
functions, which are linearly independent, and the
matrices H'V, H® ... H™ are Hermitian matrices.
There is, of course, not a unique choice for the
expansion; in general, it would be preferable to get m
as small as possible, and for the use of numerical
methods it will be preferable to use some reasonable
choice of scaling. If one wants to find exact symmetry,
then trying to get the norms of the matrices H?
approximately equal would be reasonable, and if one
wants to find approximate symmetry, then it is usually
desirable to get the norms of the functions f;(p) to be
approximately equal. But for the theory it does not
matter which choice one takes.

We will first consider the relatively simple case, in
which there exist a value p, such that none of the
eigenvalues of H(p) are degenerate. According to
Theorem 5 it will always be possible to find such a
value if none of the eigenvalues are permanently
degenerate. Then the representation in which H(p,)
is diagonal is uniquely determined. Changing to this
representation, any unitary matrix U, which commutes
with H(p), is also diagonal according to Theorem 2.
Next, form the matrix 4 whose elements are the sum
of the numerical values of the corresponding elements
of the matrices H'V, H® ... Hm™,

Hp) = 3 fo)H",

g =j§1|h,‘:;’l. (12)

The following theorem solves the problem.

Theorem 8 (Main Theorem): If H(p) is a Hermitian
matrix given by (11), where the functions f,(p), fa(p),
- -+, fm(p) are linearly independent, if H(p) is diag-
onal with nondegenerate eigenvalues for some value
of p, and if the matrix 4 is formed according to (12),
then a subspace is an invariant subspace of H(p)
independent of p if it is spanned by such a set of basic
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vectors of the representation that the corresponding
vertices in the graph G, are not connected to any
other vertices.

Proof: By performing a permutation transformation,
A can always be brought to the form

All 0 e 0
0 A22 M 0

A= , (13)
0 0 A

where the submatrices A;;, Ay, -+, Ay, are non-
reducible. The disconnected parts of G4 will then be
precisely the parts which correspond to Ay, Ag,, " " -,
Ay, respectively. After the same permutation trans-
formation, the form of H(p) will be

Hu(P) 0 0
0 Hyu(p) -+ 0
Hp={ =~ )
0 0 . Hkk(p)

and, since the functions f,(p), - * - , f,,(p) were linearly
independent, there exists a value of p for which
the submatrices Hy,(p), Hy(p), * * * , Hu(p) are non-
reducible. Theorem 8 now follows immediately from
Theorems 2 and 4.

V. FINDING THE SYMMETRY IN THE
GENERAL CASE

We will now proceed to outline a method which
will also work for degenerate eigenvalues. The
method introduced for nondegenerate eigenvalues
will not work. Since the set of eigenvectors for H(p,)
is not given uniquely, the matrix 4 is not given
uniquely, and the connectedness of the graph G4 will,
in general, depend upon the choice of representation.
We can therefore not be sure of finding all the invari-
ant subspaces by this method. The proof of Theorem
8, however, allows for the following corollary.

Corollary: An invariant subspace for H(p) given by
(11) is invariant independent of p iff it is an invariant
subspace for all the matrices HV, H® ... H™,

The vectors which span the invariant subspaces
of H(p) can consequently be chosen to be eigenvectors
of HW, and so the first step of the general method
will be to diagonalize H® and change to a represen-
tation in which H is diagonal. By choosing a suitable
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expansion in (11) and a suitable initial representation,
it would in many cases be possible to start with an
HW which is already diagonal and thereby greatly
reduce the necessary computations. The eigenvectors,
which correspond to nondegenerate eigenvalues, are
now fixed, and we only have to worry about rotations
within the eigenspaces of larger dimensions than one.
By a suitable permutation, the eigenvectors belonging
to the same eigenspaces can be given consecutive
numbers. If a matrix U commutes with H®, it is
necessarily block diagonal in this representation:

U 0 0 -+ 0
0 U, 0 0
0 0 U, 0

U= o (15)
0 0 0 U,
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cisely the one stated at the end of Theorem 3. The
division of H® (and U) into submatrices is then
adjusted, and we proceed to the next off-diagonal
submatrix of H'®. We will, however, have to keep
track of not only the subspaces in which free rotation
are still allowed, but also which of the subspaces
are coupled together so that they have to be rotated
simultaneously. After we have finished with the off-
diagonal submatrices of H®, all of them are either
square matrices proportional to the identity matrix or
else are zero. The subspaces which are coupled
together will, after some permutation, correspond
to diagonal blocks of submatrices in H® which are
of the form

We proceed to H'®, which, with the same division
into submatrices, looks like

b1115 b12I’ b131, blll
bZIIs b221a b231’ b2lI
b3117 b3213 b3311 b311
. . . . 20)
bZII: bl2I9 bl3la blll

H(2) H(Z) H(2) H(2)
H(2) H(222) H(2) H(2)

g _ | B HE H H 1
H(2) H(2) H(2) H(2)

Then, if U and H® commute, this implies that U,
and H® commute, U, and H{2) commute, etc. So the
next step will be to treat Hﬁ), H;g’, cor, H® as HO,
That means diagonalizing and performing a suitable
permutation. We then again have U in the form (15)
(except that we may have more and smaller blocks),
and the matrices H{ﬁ’, H®, .-, H? are now of the
form oy 1, aply, - - -, ol Th1s takes care of the diagonal
part of H®. The off-diagonal parts give rise to the

following types of conditions:

Ungzz) = H(122)U2- amn
Multiplying Eq. (17) by its Hermitian conjugate, one
gets

(@) (@) H
Hy Hyj5'™,
HRHEHR

UHE H{”HUH 18)
UHHg)HH(Z) (19)
Using the usual arguments together with Theorem
3 with H{® for A, one finds that one should apply
precisely that transformation to H®, which carries

H(® into the form D of Eq. (2), and that the ambiguity
we are left with in the choice of basic vectors is pre-

and where the matrix B is irreducible. The unitary
transformations, which commute with this matrix
must be of the form

/N
0 U 0 -+ 0
0 0 U
@1
0 0 0 v

When the procedure used on H® is continued to
H® HW_ --. one will eventually get to the point
where one can stop, either because all the basic
vectors are fixed, in which case the method for the
nondegenerate case can be used, or because the
procedure has been applied to the last of the matrices,
H™), In this case one can also, of course, use the
method for the nondegenerate case to find the diagonal
matrices which commute with H(p), but besides these
matrices there will aiso be unitary matrices with
diagonal blocks of the form (21), corresponding to
the rotations which have not been fixed during the
procedure. The commutation of these matrices with
H(p) will imply permanent degeneracy, which is a
consequence of the symmetry of H(p).

This finishes the description of the general method
for finding all the symmetry of H(p). We conclude
with some remarks about the numerical stability
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of the method and how the results should be inter-
preted. The only numerical procedure involved (aside
from matrix multiplication) is diagonalization of
Hermitian matrices. This is a very stable numerical
procedure, except that in the case of nearly degenerate
eigenvalues only the invariant subspace corresponding
to these eigenvalues is well determined. This difficulty
might be overcome, however, by treating nearly
degenerate eigenvalues as if they were degenerate.
The only real numerical problem is that elements of 4
which should be zero will in general not come out
of the computations as zeros, but as small numbers,
and the level one chooses for the cutoff might be of
importance for the degree of symmetry one finds.
Since, however, there generally will be many paths
in the graph G,, from one vertex to another, one
might expect that with a reasonable value for the
cutoff level it would be possible to vary this level up
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and down within a factor of ten without changing
the symmetry one finds. Furthermore, the method
being numerical, it cannot give a rigorous proof of
the existence of symmetry; it only can tell what one
should try to prove. Finally, even the existence of
unitary transformations which nearly commute with
H(p) might also provide important physical insight
and suggest useful approximations.
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The ground state functional of the linearized Einstein theory of gravitation is given as a functional of
the gauge invariant Ricci tensor, and compared with the corresponding electromagnetic expression. The
connection of the canonically quantized nonlinear theory of gravitation with the linearized theory is
exhibited. Time is treated as a momentum variable rather than as a superspace coordinate, which leads
to an ‘“‘extrinsic time representation’ A™T,, , h,,t = —3A-*7". The state functional of the linearized
theory is shown to be the initial value of the state functional of the canonical theory on a constant
extrinsic time hypersurface in the lowest order of a perturbation expansion. By means of the Einstein-
Schrodinger equation, this functional can be integrated off this initial hypersurface.

1. INTRODUCTION

One of the elementary questions we can ask about
an arbitrary quantized field is how the field quantities
fluctuate around their expectation values. Although
all expectation values are subject to fluctuations, it is
simplest to consider the field in a state for which the
expectation values of the field quantities vanish and in
which there is therefore no field whatsoever from the
classical standpoint. This state corresponds to zero
values of total energy and momentum and represents
the ground state of the field, the vacuum.

Wheeler has many times discussed the importance
of quantum fluctuations of geometry at distances
comparable with Planck’s length /, = (167AGc—®)} ~
102 cm. He arrived at a qualitative picture of the
gravitational vacuum as a foamlike structure violently
resonating at small distances among various states
with widely different geometries and topologies.I—*
On the basis of dimensional analysis and analogies
with electromagnetism, he estimated how the typical
components of the metric g, affine connection I', and
Riemann curvature tensor R fluctuate in regions of
linear dimensions /:

Ag~1Ifl, AT ~IJB, AR~L[E. (1)

Particle Representation and Field Representation

To characterize the fluctuations in more detail, we
would like to know the probability that the field is
distributed in space in a definite manner, i.e., that the
field quantities are definite functions of the coordinates
after the measurement. The “particle representation,”
in which the field is specified by occupation numbers,
i.e., the numbers of field quanta with given momenta
and energies, is not suitable for studying fluctuations
of field quantities. A natural representation in this
case is the “field representation,”” in which the field
quantities themselves, as functions of the space
coordinates, serve as canonical coordinates. In this
representation, the state of the field is described by a
functional of the field quantities, and this functional
is directly the probability amplitude of the field

quantities. The field representation has an intimate
connection with Feynman’s method of path integrals,
and was studied by a number of authors.5-7

When the field equations are invariant with respect
to a gauge group acting on the potentials of the theory,
as in electrodynamics or in the Yang-Mills theory,
the potentials themselves have no direct physical
significance, and we would like to express the state
functional as a functional of gauge invariant field
variables. As a matter of fact, all components of the
field tensor cannot simultaneously enter into the state
functional, because from the point of view of the
canonical formalism they represent conjugate variables.
For example, in electrodynamics we can choose the
magnetic field strengths B(x) [subject to the con-
dition div B(x) = 0] as canonical coordinates, and
electric field strengths E(x) [subject to the condition
div E(x) = 0] as canonical momenta. The state func-
tional can then be expressed either as a functional of B
or as a functional of E, but not as a functional of all
components of the electromagnetic field tensor Fy,.

Canonical Formulation of Einstein’s Theory and
Linearized Theory

Einstein’s theory of gravitation can be cast into
canonical form, if we take the components of the
metric of a spacelike hypersurface as canonical
coordinates and the components of the extrinsic
curvature tensor (or rather their combinations) as
canonical momenta. The state functional in the metric
representation becomes, therefore, a functional of the
metric g,.(x). The role of a gauge transforthation is
played by the transformation of the metric induced by
the new choice of coordinates. The state functional
must not change under these transformations, and
therefore depends only on the intrinsic geometry of
the spacelike hypersurface, not on its particular
representation by metric components. The set of all
3-space geometries is called superspace. In the metric
representation, the state functional satisfies a func-
tional differential equation, which can be called the
Einstein—-Schrodinger equation, because it is analogous
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to the Schrodinger equation in the quantum mechanics
of particles. No exact solutions of this equation are
known, and, in spite of considerable effort by DeWitt,?
its interpretation is still not quite clear in all respects.

For weak gravitational fields, the classical Einstein
theory of gravitation can be replaced by a linearized
theory, which is closely analogous to classical electro-
dynamics. In the linearized theory of gravitation, small
deviations of the metric are studied with respect to the
fixed flat space-time background. The system of
coordinates is chosen in such a way that it does not
differ too much from a Galilean system adapted to the
background. Small changes of coordinates, which are
permissible, induce gauge transformations of the
metric. The components of the linearized Riemann
tensor do not change under gauge transformations
and therefore represent field variables. The linearized
gravitational field can be quantized in the same way
as the electromagnetic field, through a decomposition
into independent harmonic oscillators. This procedure
corresponds to the “particle representation,”” in which
the state of the gravitational field is described by
numbers of gravitons of given momentum and energy.

The relation between the quantized linearized theory
of gravitation and the canonical formulation of the
full nonlinear theory via the Einstein—Schrédinger
equation in superspace is not quite straightforward.
In the linearized theory, the state functional is
defined only on privileged sections through the flat
space-time background, namely on a system of
paralle]l hyperplanes. Only one time parameter is
necessary to specify the chosen hyperplane within the
system. In the canonical formulation of the full non-
linear theory, any spacelike section is permissible, and
a time function of the Tomonaga—Schwinger formalism
is necessary for its specification. This time function
and the conjugate energy density form a pair of
canonically conjugate quantities, which are implicitly
mixed with the other conjugate pairs of the canonical
formalism. Relatively little attention has been paid to
the process of “linearization” of the Einstein-
Schrodinger equation. We discuss this question in
more detail in Sec. 3.

Aims of the Paper

To give a full description of Wheeler’s gravitational
vacuum, we should find a state functional satisfying
the Einstein-Schrddinger equation in the superspace
of geometries with different topologies. It will appar-
ently require a long time and many preliminary efforts
before such a complete description can be given.
However, we can try to make at least some steps
forward on the path which leads from a qualitative

3323

picture to the final formal result. The electromagnetic
ground state functional in the B representation is
well known.® Let us therefore pursue the similarities
between electromagnetism and linearized gravitation
and find the corresponding state functional of the
linearized gravitational field. This task is, of course,
much less ambitious than Wheeler’s original pro-
gram. We may assume that this functional gives a
fairly good description of the probability of small
fluctuations of geometry from the flat background.
We may also assume that, for large fluctuations in
extended regions of space, the state functional is
suppressed to such an extent that the differences
between the exact functional and our functional are
not very important. However, the linearized theory
cannot give correct information about large fluctua-
tions of geometry in regions whose linear dimensions
are comparable to Planck’s length, and these fluctua-
tions are just the most interesting ones. Moreover,
because the fluctuations are studied on the background
of a priori chosen flat space, we have no chance to
speak about fluctuations in topology.

The ground state functional of the linearized gravi-
tational field is given in Sec. 2. To find out what
guideline this functional gives to the solution of the
corresponding problem in the canonical formulation
of the nonlinear theory, we investigate in Sec. 3 the
transition from this formulation to the quantum
theory of the linearized gravitational field. In Sec. 4,
we check that our ground state functional can be
obtained in this way as an approximate solution of
the Einstein-Schrodinger equation in a suitable repre-
sentation.

Notation

Let us explain our notation. Greek indices run
through the values 0, 1, 2, 3; Latin indices through the
values 1, 2, 3. The space-time metric has the signature
—, +, +, +. Partial differentiation is denoted by a
comma; covariant differentiation with respect to the
metric of 3-dimensional space by a stroke. The
Riemann tensor, the Ricci tensor, and the scalar
curvature of 3-space are defined in accordance with
conventions proposed by Misner, Thorne, and
Wheeler,® namely:

Riklm = Pikm,l - Fikl.m + Fnkainl - Pnklr‘i'nm’
Ry = Rlilk, R = Rli,

and the same convention is applied to the correspond-
ing space-time tensors. The left superscripts 4 are
used to distinguish 4-dimensional quantities from the
3-dimensional ones, e.g., %% is the contravariant
space-time metric tensor, whereas g is the contra-
variant metric tensor of 3-dimensional space. The
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determinant of g, is denoted by g. Linearized tensors
bear the superscript (1), e.g., R, is the linearized
Riemann tensor. The 3-dimensional Fourier transform
of a function f(x) is denoted by a bar:

k) = @y f Px f(x)e i+,

f@) = @myt f d*k FR)e™,

The Laplace operator in flat space is denoted by A,
and its inverse by A=, Asterisks are used for complex
conjugation. We employ absolute units, in which & =
¢ = 16mG = 1 (G is Newton’s gravitational constant,
¢ is the velocity of light, 2=k is Planck’s constant).
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Planck’s length [, = (167Ghic—3)} ~ 10-32 cm becomes
thereby the unit of length. Rationalized units are used
for the electromagnetic field.

2. GROUND STATE FUNCTIONAL IN LINEAR-
IZED THEORY

Although our aim is to get the ground state func-
tional of the linearized gravitational field in the “field
representation,” it is intuitively helpful to start from
its form in the “particle representation” and only
afterwards to perform a canonical transformation to
the field variables. The similarities between the
electromagnetic and linearized gravitational fields
are far reaching and are best exhibited in a table
(see Table I). In the following, we explain the steps

TabLe I. Comparison of procedures leading to the ground state functionals of the electromagnetic field and the linearized Einstein
gravitational field.

Row

No. Electromagnetic field

Gravitational field

1 Lagrangian density £ = —1(A4,,, — A4, J(Ax , — A ¥)

i:G = _*hm,lhm,l - éh:,lhh‘,x
+ 4 R4+ MY hed

hm =& — N
by = Ry + Ez,x + EK,!

4Rmm}.u = '}(htu,x). + hxl,tu - htl,xu - hxu,ti-)

4R, — JIRMy, =0

(hf — th30F) =0

(Einstein—Hilbert condition)

hik,k =0, hy=0, h=0

hTTik

RMyg = $(hs yo + a0 — Hix uu — B )

(R — 3RM04) . = 0

2 Field potentials A,
3 Gauge transformation A4, —~4, + £,
4 Gaugeinvariant field F,, =4, ,— A4, «
intensities
5 Field equations Fr, =0
6 Lorentz-invariant A, =0
gauge conditions (Lorentz condition)
7 Vacuum gauge A;:=0,4,=0
(Coulomb conditions)
8 Potentials in vacuum  A%;
gauge
9  Space parts of field B=curl A
tensors as functions
of potentials
10 Integrability divB =0
conditions
11  How to construct AT  Choose B that satisfies (10E); then

and A", out of
gauge-invariant
quantities

AT = —AlcurlB

12 Reduced Lagrangian

OLg
(SATg .0

13  Field momenta T

= = ATi,o

Ly = 3 [dx(A% AT o — AT AT, )

(I) Choose RV, that satisfies (10G); then

ATT, = —2A-1(RW,, — }RMS, — FA-IR® )

(II) Choose R'Y,, that satisfies (10G) and the
equation

R =0;
then
h";k = —ZA‘lR‘”nc

Lg = ifdsx(hTTik,ohTTik,o - hTTik,lhTTik,l)

oLs
g = P 0

7ITik =
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TaBLE I (continued).

Row o
No. Electromagnetic field Gravitational field

14  Hamiltonian H x4 AT, AT 2 Jde(n”““n""k + 1" A )

15 Canonical coordinates Q" = (v2)[d"(k) + 4™*,(K)] Q= 3™ (k) + AT (k)]

o et Q1 = (VDTG — A7) 0f) = @I () ~ 17, 00)]
k-representation P&E =0 PE = QB ,

16 Hamiltonian as a d% Y(P'H P 4 PP d% YPHPH + POIpL)
function of kg >0 # i % TP k3>0 ik ik ik Pir
oscillator variables + k2QHQ + k@04 + k2P0 + k20505

17 G d stat . -
rf?::::ti;naleas a ¥ = Nexp (_é,‘;cs>0d8k ¥=Nexp (_%f k3>0d3k
eround stte * k@0l + 017017) x kQiQL + 0i0i)
functions of field
oscillators

18  Ground state ¥ = N exp (—5 f d% kAT,-(k)ffT*.-(k)) ¥ = N exp (_1 f % kh“,.k(k)h“*fk(k))
functional as a
functional of
A7) or F™, (k)

1 7 1

19 Ground state Y = N exp (— m}d’xfd’x' ¥ = N exp ( -t fd’xjd“x’
functional expressed
L ivatives of feld « B B) A OO 1)
potentials x —x[? [x —x'[?

20 Ground state

¥ = N exp (g-l—é fd’xfd*’x’
functional expressed &
by means of second
derivatives of field

X B; ,k(x)Bi , (Xdnn z)
potentials

X —x’

"= =

1
¥ = N exp (— P fd"xf d*x’

X Rmik(x)Rmu(X')"knz)
RM =0

and results given in this table. To refer to the table,
we use the row number and the letters E and G for
electromagnetic and gravitational columns, respec-
tively.

Ground State Functionals in Particle Representation

The Lagrangian densities of the electromagnetic
(1E) and linearized gravitational (1G) fields are
expressed as functions of the vector potential 4, , (2E),
or of the symmetric tensor potential 4, =g, — 7,.,
7, = n'* = diag (—1,1,1,1), (2G). Greek indices
are lowered and raised by means of 7, and #'*. The
electromagnetic Lagrangian density does not change
under the gauge transformation (3E), and the grav-
itational Lagrangian density changes only by a
divergence under the gauge transformation (3G),
which is induced by a linearized transformation of
coordinates

x - x"t=x 4 .

The field equations (SE, G) are therefore invariant
under these gauge transformations and can be written
by means of the gauge invariant field variables
(4E, G).

The freedom existing in the choice of the electro-
magnetic and gravitational potential can be limited by
gauge conditions. The well-known Lorentz-invariant
gauge conditions (6E, G) separate the components of
the potentials in the field equations and reduce these
equations to the form of wave equations for the
potentials. These equations insure that an additional
gauge transformation, generated by functions £ and
& which satisfy homogeneous wave equations and
therefore do not disturb the gauge conditions (6E, G),
simplifies the potentials even further [(7E, G)]. The
scalar electromagnetic potential vanishes, as well as
the scalar and vector gravitational potentials, so that
the electromagnetic potential is fully determined by a
space vector A; and the gravitational potential by a
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space tensor 4,; . Moreover, the vector 4, is transversal
(4;; = 0), and the tensor A, is transversal (A, ;, = 0)
and traceless (h; = 0). We accept the notation
(8E, G) for potentials in the gauge (7E, G), introduced
by Arnowitt, Deser, and Misner.!!-12

Is it possible to recover the transversal components
AT(x) and A (x) directly from the gauge invariant
spatial field intensities B(x) and R, (x). Let us
note at first that, in a 3-dimensional space, the Ricci
tensor R,(x) completely determines the Riemann
curvature tensor R;;.(X), so that we can use R,,(x)
instead of R, (x). However, the vector field B(x) or
the tensor field R;(x) cannot be chosen quite arbi-
trarily, because they must satisfy the divergence
conditions (10E, G). These conditions are just the
integrability conditions, ensuring that the equations
(9E, G) for the potentials 4; and A, have a solution.
The scalar condition (10E) reduces the three com-
ponents of B to what are effectively two independent
components, from which two independent compo-
nents of AT can be extracted, as shown in (11E). The
vector condition (10G) reduces the six independent
components of the symmetric tensor R, to what are
effectively three independent components, whereas
h™T, has only two independent components. Two
ways are then open. We can either form such a
combination of the R, that the remaining independ-
ent component automatically drops out of this
combination, as in (11G I), or we can restrict R,
further by the additional condition R® =0 and
construct #T7;, as in (11G II). In fact, the linearized
Einstein equations (5G) in vacuo imply that the 3-
space scalar curvature R vanishes. We can prove
(11G 1) by substituting into (9G) a decomposition
of the potential A, into transversal traceless, trans-
versal, and longitudinal components [see Eqs. (20)-
(26) in the next section]. We can also check directly
that the potentials A", in (11G I) satisfy the con-
ditions AT, = A", , = 0 by virtue of the Bianchi
identities (10G). The additional condition R =0
in an alternative procedure (11G II) simply insures
that the transversal part AT of the potential vanishes
[see Eq. (24)].

Using the gauge conditions (7E, G) and discarding
divergencies in the Lagrangian densities (1E, G), we
bring the Lagrangians into reduced forms (12E, G).
From these forms, the canonical momenta (13E, G)
and the Hamiltonians (14E, G) are deduced by the
standard procedure.

Let us now pass to the Fourier transforms of the
potentials, and introduce canonical coordinates Q*
and canonical momenta P in the k representation
by (15E) and (15G). The Hamiltonians (14E, G) then
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assume the form of Hamiltonians for a system of
independent harmonic oscillators of unit mass and
frequencies k [(16E, G)]. Let us note that the canonical
coordinates QF)(k) introduced in (I15E, G) are the
coefficients of a decomposition of the potentials
AT,(x) or h™,(x) into a system of standing waves
OPk)cosk-x, @“'(Kk)sink-x. This choice of
canonical coordinates guarantees that the “magnetic”
energy 4 [ d®x AT, ,A";, (or 1 d% W™, A", ) in
the Hamiltonians (14E, G) goes over into poténtial
energy of a system of harmonic oscillators (16E, G),
and the “electric’” energy % [ d®xnTinTé (or | d3x x
7Tk 7TTik) goes over into the kinetic energy of a system
of harmonic oscillators. On the other hand, a more
frequently used decomposition into running waves
mixes these energies together. The choice (15E, G) of
canonical coordinates is essential if we want to express
the state functionals (17E, G) in the Q representation
directly by means of the field variables B(x) or
RW_ (x), respectively. The coordinates Q'+)(k) are not
all independent, because Q*F(—k) = £Q0*) (k). We
can take Q@ (k) for k; > Oasindependent coordinates.
That is why the integrals in (16E, G) and (17E, G)
are taken only over the region k; > 0 of the k space.

The ground state functional of the electromagnetic
or gravitational field (17E, G) is a direct product of
the ground state wavefunctions of harmonic oscilla-
tors (15E, G). We can write the state functionals also
by means of the Fourier transforms A ,(k) or A™",,(k)
of the potentials, as in (18E, G). The coefficients N’
are normalization constants.

Ground State Functionals in Field Representation

Let us now try to pass to the “field representation”
of the state functionals (18E, G). For the electro-
magnetic field we can easily express the integral in the
exponent of (18E) in terms of the gauge invariant
magnetic field intensity B(x). By virtue of the relation

x| = $(2m)¥,
we get
fdaxfdsx, B,'(X)B,;(X2)
Ix — x|

= (2m)t j &k 42m BB ()
= 2 f &% kAT)AT4(K).

This yields the well-known gauge invariant form of the
electromagnetic ground state functional (19E).? In the
same way, we can express the gravitational ground
state functional by means of a quadratic combination
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of first derivatives of the transversal traceless com-
ponents of the gravitational potential (19G). Express-
ing the potentials ATT,, through R, according to
(11G), we get V' as a functional of gauge invariant
intensities. However, there is a fourfold or a sixfold
integral over the x coordinates in the exponential,
depending on whether (11G II) or (11G I) is used.

However, the gravitational ground state functional
can be expressed by yet another and simpler way in a
form

Y = N exp (—fdsxfdax’
X Kpm(X — x')R‘”.-k(x)R“’m(xo). @

Let us suppose that RV, satisfies R = 0. Because
the linearized Ricci tensor is a combination of the
second derivatives of potentials, its Fourier trans-
form depends on the square of the wave vector k:

R(l)ik(k) — %kthT,-k(k)-

The Fourier transform of the kernel K,.(x — x’)
must therefore contain k=3 in order that (2) coincide
with (18G). This is true for a nonradial tensorial
kernel containing a unit vector n = (x — xX')/|x — x/|.
We prove in the Appendix that

iy = [~2mak) + 32m)8,,
ki ky

+ [Bem¥k) — 22m ok

3
Investigating the double integral

f d® f d*' RW,(x)RY, (x ),
= @mt f &% RO, (k) RY*, k),
= 1emt f &k KR OR™™, (),
= i f B KR, (T (K),

we learn that the only contribution from 77, comes
from the term 4(2m)%—3%5,,, because AT, (K)k; = 0
in consequence of the transversality of A™,,, and the
contributions from § functions are eliminated by the
muttiplicative factor k4. In this way we get the gauge
invariant form (20G) of the gravitational ground state
functional.

The functional (20G) is in a sense simpler than the
electromagnetic functional (19E), because it depends
only on the direction of the vector joining the points
x and x’ and not on its magnitude. However, the
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difference between these expressions is only apparent,
because the electromagnetic functional can be trans-
formed into the form (20E), containing second
derivatives of the vector potential 4; and closely
analogous to (20G). To prove this statement, it is
sufficient” to introduce the Fourier transforms into
(20E) and use (3) to return back to (18E), or we can
reduce (20E) directly to (19E) through partial integra-
tions, because

B; 1(x)B; ((x")nn,
= 0(B(X)B; (X' )nyn;) — YBAx)BAX')(mny) 1)
— B(x)Bi(x")(nn)) 11
(meny) =2 |x — x'[7%

We see that, using nonradial kernels, we can express
the state functionals in a number of equivalent ways.
For example, the electromagnetic ground state
functional can be written as

¥ = N exp ( — (@) f o f F
X [curl B(x) - n}{cur] B(x") n]) ,

and also in several other forms.

3. THE EINSTEIN-SCHRODINGER EQUATION
AND ITS LINEAR APPROXIMATION

Initial Value Equations and their Quantum Counter-
parts

In the general theory of relativity, the dynamics of
the gravitational field is hidden in the initial value
equations

i = =2n = =20, — g2 1k — Gm )T

=0, (4
¥ = g Hgugim — dgagim)miatn — g*R =0.

The momenta =% are determined by the extrinsic
curvature tensor K, of a 3-dimensional spacelike

hypersurface on which the initial data are given:
ik = _gé(Kik — Kg'v). ©6)

The extrinsic curvature K,; depends on the metric
%¢,. of the surrounding space-time through the lapse
function N and shift functions N,:

Ky = 3N —gixo + Ny + Nkli)a
N; ='gu, N=(—%g"k

M
®

If the initial value equations (4) and (5) are satisfied
on all possible spacelike sections through the space-
time, it is ensured that the gravitational field satisfies
all the other Einstein vacuum equations.
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In quantum mechanics, the initial value equations
(4) and (5) become constraints imposed on the state
functional ¥';

Y =0, %)

Y = 0. (10)

As in the classical theory, these constraints contain
implicitly all information about the time evolution
of state. This general approach was suggested by
Dirac!? and extensively studied by DeWitt.8

In the metric representation, the functional ¥ is
chosen as a functional of the components g, of the
metric tensor, and the momenta are replaced by the

operators
0

0gu(X)

The constraint (9) then means that the state functional
does not change under a transformation of co-
ordinates x¢, so that'¥" depends only on the intrinsic
geometry § of the 3-space. Equation (10) is then the
only remaining condition that the state functional
must satisfy. Because of its resemblance to the Schro-
dinger equation of ordinary quantum theory, Wheeler
called it the Einstein-Schrddinger equation. This
equation tells us how the state functional evolves on
the set of all possible 3-dimensional geometries—i.e.,
on superspace.

m(X) = —i

(11)

How Do We Linearize the Quantum Constraints?

The state functional of the gravitational vacuum
(20G) that we obtained in the last section was ex-
pressed as a function of the linearized metric tensor,
via the linearized Ricci tensor, so that it was not af-
fected by gauge transformations h; — hy + &, +
&+, induced by linearized transformations of coordi-
nates. It seems, therefore, easy to interpret this
functional as a state of the gravitational field on
superspace and to show that it approximately satisfies
the Einstein-Schrodinger equation (10).

One should find an approximation to the Einstein—
Schrédinger equation corresponding to the lineariza-
tion of the classical Einstein equations. This task is
seemingly quite straightforward. It is tempting to
define the “linearized superspace” as the set of all
3-geometries that differ only by a small amount from
the Euclidean geometry, so that in a properly chosen
coordinate system

8i(X) = 0y + hy(x), |hup(X)] K 1.

If we define the state functionals on the ‘““linearized
superspace”” and require that they are unaffected by
linearized transformations of coordinates, we find out
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that these functionals satisfy the “linearized” form of
Eq. (9), viz.,
(ﬂ) -0
6hzk k

It remains to decide how to linearize the Einstein-
Schrodinger equation. Leutwyler'® proposed to keep
the lowest-order terms in the “kinetic’’ and “potential”
parts of this equation separately and to write
62

1616 ———+h” —hz,,)q}.:O.
2%k IM)(Sh“c(Shlm Jkk k,ik

(13)

Unfortunately, this simple procedure does not
reproduce the quantized form of the linearized theory
of gravitation. However, before modifying the
procedure, we find it instructive to analyze the reasons
for its failure. This will be done in detail in the follow-
ing four subsections.

(12)

((ai,am -~

Linear Approximation Inadequate to Handle Thin
Sandwich Theorem

The metric representation of the state functional is
based on the assumption that the components of the
metric tensor can be taken as independent variables.
This assumption has been formulated in the classical
theory as the “thin sandwich theorem,” according to
which an arbitrary initial metric g, , together with its
arbitrary rate of change g o, uniquely determine
(under appropriate boundary conditions) the space-
time in which the hypersurface carrying the initial
geometry is embedded. The initial value equations
(4) and (5) are interpreted, by means of (6), (7), and
(8), as the equations for the lapse function N and the
shift functions N,. Supposing that the thin sandwich
theorem is correct, we see that N and N, are deter-
mined uniquely by these equations and, together with
other data g,; and g ,, they fix the initial momentum
i, The lapse function characterizes the proper time
that elapses between the neighboring hypersurfaces
x* = const and x° 4 dx® = const. The intrinsic
geometry § = {g;,} therefore carries information
about time'4; roughly speaking, from the three inde-
pendent components of the metric tensor remaining
after dividing the 3-dimensional metrics into equi-
valence classes by the group of coordinate trans-
formations, one component represents an intrinsic
time, and the other two represent the proper dynam-
ical degrees of freedom of the gravitational field.

These features. of geometrodynamics in the general
case are obscured by the usual linearization of Ein-
stein’s equations. There the quantities g, =%, N,
and N are expanded into power series in a small
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parameter A:

gin = 0p + MWy + Ph®y + - -+,

E =

Tk = AmDik 4 A2 )ik e,
Ni = }.N(l)i + A2N(2)i 4o, (14)
N=1 +/’[N(1) +12N(2) + -

Substituting these expansions into the initial value
equations (4) and (5) and collecting the terms with
the same power of 4, we get the initial value equations
in successive orders of approximation. Specifically, to
the first order in 4, we get

Wik = 0,

— 1 —
RY = _h(l)ii,kk + Ay o = 0.

(15)
(16)

However, Eq. (16) tells us that the initial linearized
geometry ‘Y, cannot be freely specified. In fact, not
only A%, but also AW, , is limited. Using the
definitions (6), (7), and (8), we substitute the power
expansions (14) into Eq. (15) and get

k= 1
aWE = — (A0 — B g on)

— 3(N®, = N )5 = 0.

Differentiating this equation with respect to x¢, we
see that the term containing the shift functions N,
drops out, and the rate of change of the initial geo-
metry AV, o is subject to the same restriction as the
geometry itself, viz.,

1 1 _
_h( )ii,Okk + h( )ik,Oik —

Moreover, the lapse function N does not enter
into the first-order approximation equations at all
and is therefore left completely undetermined by them.
We conclude that in the linear approximation the
geometry is neither freely prescribed nor does it
carry enough information to determine the proper
time interval between neighboring spacelike hyper-
surfaces.

Extrinsic Curvature More Sensitive to Small Deforma-
tions of Spacelike Hypersurface than Intrinsic
Geometry

The plausibility of this conclusion can be seen from
yet another point of view. Let us study entirely flat
space-time in which the Cartesian system of co-
ordinates (x%, t) is introduced. We pick out a space
hypersurface by giving ¢ as a function of x?,

1= 1(x7), (i7)
and use x* also as intrinsic coordinates on this hyper-
surface. The intrinsic geometry g, and the extrinsic
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curvature K;; of the hypersurface are then given by

(18)
(19)

The function #(x?) represents a generalized time pa-
rameter, characterizing a deformation of the hyper-
surface from the chosen hyperplane ¢ = 0. We see
that the intrinsic geometry of the hypersurface (17) is
affected by this deformation only in the second order
terms. Even if space geometry is a carrier of informa-
tion about time, as the title of the Baierlein, Sharp,
and Wheeler paper suggests, we must conclude that
it is a poor carrier of information about time in the
immediate vicinity of flat space-time. Unfortunately,
it is just the immediate vicinity of flat space-time in
which we are interested in the linearized theory of
gravitation.

On the other hand, the extrinsic curvature (19) is
influenced by a small deformation #(x?) from the
hyperplane already in the terms linear in #(x®). It is
therefore easier to determine #(x?) by looking at the
extrinsic curvature of a hypersurface, rather than at
its intrinsic geometry. We shall use this insight later
on, while adapting the representation to match the
linear approximation.

8k = O — il ks
Ky =130 — t,zt,z)_%~

The Two Independent Degrees of Freedom of
Linearized Geometry

We have seen that the components of the linearized
metric tensor are subject to the restriction (16). To
exhibit the independent degrees of freedom explicitly,
we can use the Arnowitt-Deser—Misner decomposi-
tion of a symmetric tensor f;; into transversal traceless
S, transversal /T, , and longitudinal /¥, parts'*12:

Joo =+ a + M (20)
fTTik’k =TT, =0, fTik,k =0, @1
[ = "0 — AT ), (22)
Sl =fip + feis (23)

TP =fu = A Y (24)
fi = 87 (fa i — 307 s p00)s (25)
% = fae = Mol fim) — PR fym)- (26)

The restriction (16) then means (under the usual
boundary conditions at spatial infinity) that AVT = 0.
It “freezes out” the freedom one has in the general
case to move the spacelike hypersurface forward by
one amount at one place and by another amount at
another place. Thus linearization effectively takes
away one of the “three degrees of freedom per space
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point” in the choice of . What are then the two
remaining independent degrees of freedom? They are
not contained in the three functions AV, These
describe merely the freedom in the choice of space
coordinates and can be annulled by a gauge trans-
formation AW, — AW, + EV, . 4 EW, .. What is
left are the transverse traceless components AVTT,
There are only two free functions in a transverse
traceless tensor. They represent exactly the two
independent dynamical degrees of freedom per space
point that we have in the choice of 6.

Why Does the Straightforward Linearization of the
Einstein-Schriodinger Equation Fail?

Let us summarize the reasons why the linearization
of the Einstein-Schrédinger equation proposed by
Leutwyler does not lead us to the quantized form of
the linearized theory of gravitation. We shall then be
in a position to propose the necessary modifications.

We have seen that in the classical geometrodynamics
the linearized geometry cannot be freely prescribed
and the linearized geometry limited by the condition
hT = 0 cannot be used to characterize time. Therefore,
we can hardly expect that in the quantum geometro-
dynamics the state functional ¥'(h;) ranges over a
set of freely specifiable linearized 3-geometries and
describes thereby how the probability amplitude of
the gravitational field changes with time, This under-
mines the basic assumption that led us to Eq. (12).

Not even Eq. (13) is consistent from the point of
view of the usual linearization procedure, because it
leaves quadratic terms in the momenta, but neglects
quadratic terms in the first derivatives of the metric
tensor. We know, however, that these quadratic
terms enter the Hamiltonian (14G) of the linearized
theory. It therefore appears inescapable to take the
equations (9) and (10) at least to the quadratic terms,
if we want to get from them the quantized form of the
linearized theory of gravitation.

Returning to Leutwyler’s linearization, we can find
the expansion method on which it is based. Com-
paring the linearized quantum constraints (12) and
(13) with the initial value equations (4) and (5), we
are led to the expansions

8w = O + A2 4 2R 4
,n.'ik — .3.17(1)':1" + 3’3,”{3)1'?: + DRI
They enable us to treat Eq. (4) in the first order and,
at the same time, Eq. (5) in the second order of a small

parameter A, while the quadratic combination of
momenta 7" is just balanced by the linear combina-
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tion of coordinates 4, . This procedure is, of course,
different from the conventional linear approximation
method, and we cannot expect it will simply repeat its

results.
The Extrinsic Time Representation

When we are forced to treat the quantum con-
straints (9) and (10) up to the quadratic terms, the
metric representation is not really advantageous. The
state functionals of the linearized theory are defined on
hyperplanes ¢ = const with respect to the flat space-
time background. We have seen that the intrinsic
geometry of these hyperplanes is insensitive to their
small deformations. It follows that we must take the

- “square root” of the deformed metric (18) to recover

the time #(x). This is possible in principle, but in-
convenient in practice. On the other hand, the
extrinsic curvature (19) is affected linearly by a small
deformation #(x). The time (x) can, therefore,
more easily be extracted from the momenta #** than
from the coordinates g,;. For small deformations
1(x) there is a straightforward way to do it, viz.,

t(x) = —3An". @7

This is just an inverse formula to (19), as we can
check using the definitions (6) of the momenta and the
prescription (24) which tells how to find a transversal
part of a tensor. However, whereas to a given #(x)
there corresponds the unique #T(x), to a given #(x)
there corresponds a whole family of #(x)’s. Indeed, we
can add an arbitrary linear combination (f, —
v-x)(1 — ¥ of x* to the right-hand side of (27)
and still have a solution of (19). The hypersurfaces
#(x) of this family differ from each other by a constant
time translation and/or Lorentz transformation at
spatial infinity. This corresponds to different boundary
conditions for the A-! operator.

The basic idea expressed by Eq. (27) is that time can
be better treated as a momentum variable ™ than as a
superspace coordinate. It is a representation by
BT (x), h(x), t(x) = —3}A1%", rather than the
metric representation kg (x) or AT (x), h(x), A¥(x),
that makes the interpretation of linearized quantum
theory of gravitation simple. In the metric repre-
sentation, time is implicitly characterized by the
intrinsic geometry of a spacelike hypersurface. In
the new representation, it is reconstructed from the
extrinsic curvature. Therefore, wanting a descriptive
name for the new representation, we shall call it the
“extrinsic time representation.”

Just as =T characterizes the deformation #(x) of a
spacelike hypersurface from a hyperplane on the
background of flat space-time, A,(x) characterizes a
deformation of a system of space coordinates on this
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hypersurface from a Cartesian system of coordinates.
Deforming our system of coordinates from the
Cartesian system, x* — x* + &%, we get in the first
order the metric tensor, the longitudinal part of which
gives directly the deformation 4, = &;.

The meaning of the quantities =™ and h, as param-
eters specifying the choice of space-time coordinates
was discovered by Arnowitt, Deser, and Misner.!* In
an effort to exclude the surplus variables from the
initial value equations (4) and (5) and thereby to
identify the proper dynamical degrees of freedom of
the gravitational field, they fixed #* and h; by co-
ordinate conditions

t=—3A"7T, h; =0, (28)

that selected (at least for weak fields) from all systems
of coordinates a system that was as close as possible
to a Cartesian system of coordinates in the flat
space-time.

We took a slightly different attitude in this paper,
corresponding to the philosophy that the basic
variables of representation have a twofold task: to
describe the changing gravitational field and simul-
taneously the time in which it changes. We shall
therefore leave #(x) = —3A~'#* and A,(x) undeter-
mined as arbitrary functions of x. They specify the
choice of hypersurface and the choice of coordinates
on this hypersurface as deformations from the
privileged system of coordinates in which conditions
(28) hold. Intuitively, the four quantities #(x) and
h(x) represent a “‘many-fingered time.”” This particular
mixture of Dirac’s approach to quantization with the
Arnowitt-Deser—Misner choice of variables does not
appear to have been treated in the literature, though
it has a number of interesting features.

Successive Approximations to Inifial Value Equations
in the Arnowitt~-Deser-Misner Formalism

The general method of successive approximations
to the initial value equations (4) and (5) based on the
power series expansion (14) was already mentioned.
It assumes a very convenient form in the Arnowitt-
Deser-Misner formalism. In the first approximation,
we choose wWTITi#k L WT and pWIT - p0. (e,
2+ 1+ 24 3 =8 numbers per space point) freely.
Equation (4) then determines 7 =0 (3 numbers
per space point), and Eq. (5) determines A‘VT =0
(1 number per space point). Substituting these values
to the second approximation, we get

(2)7 (2)1, (1)TT (1)TT
I = pr B T Hy o =0, (29)
J® = _E® 4 Tk, OTTék

£ RWTT, BWIT g 0, 30)
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The quantities

Pi(x) = —Z(A"Ti + 7Tk,kz')
and

E(x) = —AR"

are canonically conjugate to h;(x) and —#(x). They
can be interpreted as effective momentum density and
effective energy density of the gravitational field,
respectively. The expressions H;, and H, are quadratic
functions of #VTTEk T pWTIT —and AW, the
form of which we need not know in the following.
They are long and complicated and therefore will not
be written out here. We see that we can again freely
prescribe the eight second-order quantities =TTk,
7T and K@TT, | h®),, and determine thereby the
three second-order quantities =®? and one second-
order quantity A®” through Egs. (29) and (30). In
general, 70 % 7T, and K™Y, h; can be prescribed
freely at any stage of the approximation, and the
initial value equations then determine =* and 7.

Linearized Quantum Constraints in the Extrinsic
Time Representation
In the extrinsic time representation, the quantities
canonically conjugate to h™;, h;, and ¢ are replaced
by the operators

Ty O a0
T = igE e PO TG
_ .. 0
Ex)=i (5t(x)' 31

The constraints (9) and (10) then determine how the
state functional ¥'(h**,,, h;, t) evolves in the variables
h; and t. Specifically, if we prescribe ¥'(h1;,, 0,0) =
Wo(h™ ), the state functional W (AT, h;, 1) is given
for an arbitrary h,(x) and £(x) by means of (9) and (10).
We can return from the extrinsic time representation
to the metric representation by a formal Fourier
transformation in the function variable #(x):

\P‘(hTTik! hi’ hT)
- f DEF(H™,, , by, ) exp (i f dox t(x)AhT(x)).

A perturbation method of solving Egs. (9) and (10)
corresponds to the approximation method of solving
the classical initial value equations. If we replace the
super-Hamiltonian J¢ and supermomentum X! by
perturbed operators,

Je(A) = R(Ah™™,, Ak, A2hT, AT 2200 AnT)
= ).23@(0) + 13:‘6(1) 4o,

A = IR T, Ay, 22HT, AT A2nt AaT)
_ 1236(0“ + }."Je"” FRP
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and assume that the state functional is expanded in
a power series in the small parameter 4,

Y = YO L AP 4 o) 4 ... s
we get ¥'(® as a solution of the equations
RO =0, JOO 0, (32)
We get the operators J¢® and Je© if we cease to
distinguish the first- and second-order quantities in
Eqgs. (29) and (30), and substitute there the operators

(31) for #™Té* pi, and E. Equations (32) then assume
the form

N SO
i = - .
3t(x) AT (x)8h" " (%)
+ 3% OB (O + H, Y,
33
6\}[‘(0) lF.(o) o ( )
léh(x) == rs (%) hTT (x )+ Hik,klym. (34)

These equations resemble the Schrodinger equation
even more closely then the Einstein-Schrodinger
equation in the metric representation (which is, in
fact, an equation of the Klein-Gordon type). The
differentiation with respect to a single time parameter
is, of course, replaced by functional differentiations
with respect to #(x) and A,(x), as is appropriate in a
many-fingered time formalism. However, as we shall
see in the next section, we can further specialize the
variations of the spacelike hypersurface and pass into
the single time formalism. In this process, the compli-
cated operator terms H, , and H,,, being perfect
divergences, will allow themselves to be eliminated.

Writing down the functional differential equations
(33) and (34), we have reached the final goal of this
section. These equations are the natural starting point
for treating weak gravitational fields within the Dirac
formalism. We shall illustrate the analysis by applying
these equations to the particular problem of gravita-
tional vacuum in the next section.

4. GROUND STATE FUNCTIONAL IN THE
EXTRINSIC TIME REPRESENTATION

Time Translations

Equations (33) and (34) determine the functional
Y'© for every hy(x) and #(x), if we know its value ¥'{®
for A, (x) = 0 and #(x) = 0, i.e., in a privileged system
of coordinates on a privileged initial spacelike hyper-
surface #(x) = 0, 7L (x) = 0. However, we can also
ask how W@ changes if we pass from one privileged
hypersurface 7*(x) = 0, h,(x) = 0, corresponding to
t(x) = t, = const, to another privileged hypersurface
7T(x) =0, h(x) =0, corresponding to a slightly
changed time parameter f(x) =?, + d¢, = const.
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The functional ¥ depends in this case on one real
parameter #, and

(35)

In order that W describe a stationary state with
energy E, = const, we must have id'¥'9/0t, = E, ¥,
Equations (33) and (35) then yield

23~(0)
fd3x(— v

Oh™ 1 (x)8h™" 1(x)
W (O O ) = EX. (36
The terms containing the operator H,, drop out
because they can be transformed into an integral over
a 2-dimensional surface at spatial infinity, which
vanishes because of the boundary conditions.
We can easily verify that the ground state functional
(19G) satisfies Eq. (36). We get

¥ _1_ 3,/ hTTik,ll(x’)

—— \P(O), 37
6h’1T,-k(X) 477'2 IX — X'|2 ( )
6?"?(0)

OB (X)OR™ s (x)

— _l_I:A __1_] 1{;'(0)
ar®l |x — x'|P)ex

J-ds ,f 3 " A hTrz (x )A”hTTzk(x”)lP.
(3%)

x"?
The first term on the right-hand side of Eq. (38)
diverges. We see from (36) that it represents the
infinite energy density of the gravitational vacuum.
To get rid of it, we should introduce a corresponding
renormalization counterterm into the Einstein—Schro-
dinger equation (10). If we use the relations

EPxlx - x| x —x"|? =7 |x —x
A'|x' — x| = —47d(x’ — x")

and integrate the second term on the right-hand side
of Eq. (38) with respect to x, as required by (36),

we get
-G f dx f ' f &x”
Aa7

—_— e —— fd3 lj‘d:i II hTT k(x )A”hT’l (X”)

(41r) [x — x?|x —

//l—l
s

AlhTTik(xf)AnhTTik(x")

//'2

Ix —x'|*|x —

- X’
1

|xl — x”l

=t stx’fdsx” hTTik,l(x’)hTTz‘k,[(xﬂ)A/
m™

=1 f dox’ B (X )NTT, ().
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This term just cancels the second term on the left-
hand side of Eq. (36), so that Eq. (36) is satisfied.

Spatial Translations

Equation (36) follows from Eq. (33) when we restrict
ourselves to constant translations in time. A similar
procedure can be used for Eq. (34), when we restrict
ourselves to constant translations in space. The ground
state functional should be invariant under such
translations, the vacuum being the state of zero
momentum. This means that

(0) \7(0) )
f & 2;1{”( = - f &% P (x) mfff =0 O
b X rs X

Let us check that the functional (19G) satisfies
this equation as well as Eq. (36). Using (37), we see
that we must verify

TT N, TT
fdaxfdax, B s (XA (X) =0

Ix — x'|*

The last integral can be transformed by a sequence of
integrations by parts to the form

f & f d' hTT, (ORTT, (x); X — x|
Because ATT  (x)ATT (x) is symmetric under the

interchange x <> x’ whereas d,|x — x'|2 is anti-
symmetric, this integral vanishes as required.

How to Get off the Hypersurface of Constant /(x)

As already remarked, Eqs. (33) and (34) determine
YO R, hy, 1), if YOKTT,,0,0) is known. We
expand the functional in a power series in the function
variables A,(x) and #(x):

PO PORTT Y 4 f Px a(x)h(x) + f &x a(x)i(x)
+ f P f &%’ by(x, X )h(X)h{X')
+ f P f & by(x, X)((OUK) + hi(x')(x))
+ f dx f 4% b(x, X)) + -+ (40)

The coefficients of this power series can be determined
by repeated variations of Eqs. (33) and (34) with
respect to #(x) and h,(x) in the point ¢(x) = A,(x) = 0.

For example,
)
a(x) = [6‘1" :I
) Jyxy=n, =0

(41)
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can be found by substituting #(x) = h,(x) = 0 into the
operator H, , on the right-hand side of Eq. (33) and
taking there W instead of ¥©. However, it is
necessary to take into account that Eqs. (33) and (34)
were obtained when we neglect the cubic and higher-
order terms in the exact super-Hamiltonian and super-
momentum. Further terms Y@, W@ ... of the
perturbation expansion of the state functional modify,
therefore, those terms of the power series expansion
of ¥ that depend on cubic and higher-order com-
binations of the variables A™,,, ;, and #". It is there-
fore illusory to retain termsin the power series
expansion of ¥ of higher order than those we have
explicitly written down in (40).

The first two integrals in expansion (40) indicate
what happens if we slightly deform the original hyper-
surface and the system of coordinates on this hyper-
surface and observe the change in the state functional,
linear in deformation. Determining the coefficient
a(x) as in (41), we get

i 1
—_L(a
a(x) 4772( |x — x’[z) e’

+ second order terms in h™%,;, .

The first term drops out when we renormalize the
energy, so that the integral | d3x a(x)#(x) is cubic in the
variables ATT,(x) and #(x) and may be neglected.
The same conclusion is reached about the term
§ d3x a,(x)h,(x) if we use (34). A deformation of the
hypersurface therefore leaves the ground state
functional practically unchanged in the terms linear
in the deformation parameters #(x) and A,(x). This is
just what can be expected of the state with zero energy.
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APPENDIX

To prove the relation (3) in the text, we study the
Fourier transform of

Ju(x) = ni"ke_slx!,

Jolk) = (2 )”%fdax nn, e Exelxl

n; = x;/|x}, €>0:

(A1)

Because f;,(k) must bé form invariant as a function of
k under rotations of a Cartesian system of coordinates,
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Fix(K) must be of the form
Sa(&) = A(k)dy, + B(l)kk;. (A2)

To determine the scalar functions A(k) and B(k) of
k = k|, we contract Eq. (Al) in i and k and multiply
Eq. (A1) by the tensor k;k,/k?. Because of (A2) we get

34 + BK® = 2m)d f P = Hx—elx| (A3)

A+ Bk = (2")_%Jd‘"’x(niki/k)e'“‘"“l"'
= (2")_&fwd" (Tze_"f d® cos® & sin 9
0 0

X e—ikrcossf- d(p) (A4)
0

The integral on the right-hand side of (A3) is simply a
¢ function:
34 + Bk* —> (2m)(K). (AS)
€0
On the right-hand side of (A4) we can easily integrate
over the angles ¥ and ¢ and get

A + BK®

3 _erf2sinkr 4coskr 4sinkr
= (2m) J; dr r’e ( P + R
=AM+ A+ A,

The individual integrals over r give
N T
K4+ Ene + kP
—> 2m) K 2(k)

€0

Ay =(@mt

= 2misK),
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- b2l €
A, = 202m) K T

—> 202m k%K)
€0

= 202m)¥5(k),
Ay = —4Q2n) i f d(ker) SBKT er
0 kr
— —nK,

so that
A+ BI*—> 3entem) — emit.  (A6)

From (AS5) and (A6) we find the coefficients A and B
and thus obtain the relation (3) in the main text.
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We consider nonlinear boson self-interactions with a periodic spatial cutoff. We prove that the energy-
momentum spectrum lies in the forward light cone. A momentum cutoff does not influence this result.
For theories with finite-field strength renormalization, we obtain bounds on the vacuum expectation
values of products of the ¢,’s and V¢’s. These bounds are uniform in the volume (and possible momen-

tum) cutoff.

1. INTRODUCTION

In this paper we prove results about the spectrum
and the vacuum expectation values for models with
boson interactions. We use a periodic space cutoff
and a translation invariant Hamiltonian, so that the
energy and momentum operators commute. Our results
are independent of the possible presence of a momen-
tum cutoff, and rely on the fact that the ground state of
the (cutoff) theory is nondegenerate. Our results also
hold for models with fermions (such as the Yukawa
coupling) once the uniqueness of the ground state
(vacuum) is established. In the Yukawa coupling,
for instance, the vacuum is known to be nondegener-
ate for small values of the coupling constant 4,
|4] € 4y, but is is not known whether A, approaches
0 as the volume of the periodic box tends to infinity.!

In Sec. 2, we prove that the energy-momentum
spectrum lies in the forward light cone. In the remain-
der of the paper we derive bounds on the vacuum
expectation values of certain products of field opera-
tors. These bounds are uniform in the space cutoff
and the momentum cutofl.

It is known that the vacuum expectation values

(Q, d(xy, 1)+ + * $lxn, 1Y) (L)

of a quantum field ¢ in its vacuum state () uniquely
determine the field ¢. The Wightman axioms for
field theory can be stated in terms of the vacuum
expectation values,?and given such expectation values
one can construct a Hilbert space X of states and the
field ¢ acting on JC.2 Furthermore, the scattering of
particles described by the theory is given in terms of
the vacuum expectation values by the reduction
formulas of Lehmann, Symanzik, and Zimmermann.®
Wightman’s program? for constructing the field ¢ is
to find a sequence of approximating fields ¢; with
vacuums €, and to take the limit as j— oo in the

approximate vacuum expectation values
€, 51, 1) =+ - hy(xn, 1)2,). (1.2)

The limiting expectation values (1.1) are then used
to construct ¢ and the Hilbert space J.

We derive bounds, uniform in j, for the approxi-
mate vacuum expectation values (1.2) in which ¢ is
replaced by V¢ = ¢, or by m = ¢,. These bounds
are valid for boson interactions which are super-
renormalizable and which have a finite-field strength
renormalization constant.

2. THE ENERGY MOMENTUM SPECTRUM

We study boson self-interactions in a periodic box
of volume |V|. We assume translation invariance and
positivity of the Hamiltonian. We then prove that the
energy-momentum spectrum lies in the forward light
cone. In 2-dimensional space-time, these results apply
to theories with no momentum cutoff. Our results also
apply to models with a momentum cutoff, although
the momentum or periodic space cutoffs presumably
destroy Lorentz covariance.

We work in (s + 1)-dimensional space-time. Let
V be a periodic box in s space having volume V|,
and let I'y be the lattice of allowed momenta. Then

by ) = Q2| exp (—iky
X [a(k)* + a(=k)ulky)t dk (2.1)

is a cutoff scalar boson field in the box V. Here ky- € 'y,
is the lattice point nearest k. The field ¢, (x) = ¢, ,(x)
has no momentum cutoff. The conjugate time zero
field is

mp () = i(2myH2d f, o oxp (k)
x [a(l)* = a(—k)lulky)? dk.
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Let § be a polynomial bounded from below. We set

H, = f a(k)*u(ky)a(k) dk, 22)

H,; =fV:T(¢V,k(x)): dx, 2.3)

E = inf spectrum (H, + H)),
H = Ho + HI - E’

(2.4)
(2.5)

P= f a(k)*kya(k) dk. (2.6)

For « < o, the operators (2.1)-(2.6) are essentially
self-adjoint on the domain D consisting of Fock space
_ vectors with a finite number of particles and wave-
functions in 8.5 For « = o, s + 1 = 2, the operators
H,, Hy;, and P are essentially self-adjoint on D, and H
is essentially self-adjoint on D, = D(H,;) N D(HY).57
The operator H commutes with the operator P.
The operator H has a unique ground-state vector
Q(V, k) = Q, satisfying H(Q =0, and zero is an
isolated point of the spectrum of H.®7

The self-adjointness of H and P and the existence of
a ground state for H extend to the operators

H(f) = Hcosh § 4+ Psinh §,
P(B) = Hsinh § + Pcosh §.

Since there is no free constant in H(f), the ground
state Q(V, «, B) = Q(B) of H(B) is the eigenvector of
a possibly nonzero eigenvalue E(B). This eigenvalue
is simple and isolated, by the same proof that works
for H. Clearly H(8)* — P(f)* = H®> — P?onD, x D,.

Theorem 2.1: The joint spectrum of H and P above
lies in the forward light cone. That is,

0 < H(p),
0 < H2— P2,
E@) =0, Qp) =0
Proof: For 5 + 1 = 2, the resolvents
[HV, «, ) — {7

converge in norm as « — oo to the resolvent of the
limiting Hamiltonian H(V, ) = H(V, «, ). The
operator H(V, f) commutes with P, and their joint
spectrum is contained in the limit of the joint spectrum
of H(V, x, ) and P, as k — o (Ref. 9, p. 432). Thus
it is sufficient to prove the theorem in the case « < co.

On the core D, the operators H(f) are strongly
continuous in § and in the coefficients of §. Thus the
resolvents are also strongly continuous in f and §.
Because E(f) is an isolated eigenvalue, the projection

J. GLIMM AND A. JAFFE

@(p) on the vector () depends continuously on g
and § (Ref. 9, pp. 437-38). Since H and P commute,
so do H(f) and P, and so do Q(f) and P. The range
Q(p) is one dimensional, and so it is contained in
an eigenspace of P. The corresponding eigenvalue
belongs to the discrete lattice I'y, and depends con-
tinuously on g and 7. Thus the eigenvalue must be
independent of § and P. From the case f =0,
=0, H= H,, Q) = Qy = Fock vacuum, we see
that

PQ(B) = 0.

The ground state energy of H(f) is nonnegative
because, by (2.7) and the fact that 0 < H,

0 < cosh B (B, HQ(B)) = (UB), H(FXXB))
= E(B).
Thus 0 < H(f) and, on D x D,
0 < H(B)H(—p)(cosh ) = H* — (tanh §)*P?,

and so, by limits as § — o0, 0 < H? — P2,
The ground state energy of H(f) is nonpositive
because 0 = (Q, H(B)(). Thus E(f) = 0 and

H(PHQB) = 0. (2.8)
By (2.7) and (2.8), HQ(f) = 0, and by the uniqueness
of the vacuum for H,
Q) =Q
is independent of 8. This completes the proof of the
theorem.

Q.7

We remark that the result (f) = Q agrees with
the prediction of perturbation theory. To first-order
perturbation theory, QW = Q, — H;'H,Q,. The
expression for Q(f) to first order is

QB = Q, — (H, cosh § + P sinh 8)~*cosh BH,Q,
= Qo - Ha_lHIQo = Q(l),

where we have used [P, H;]=0 and PQ,=0.

Similar calculations yield Q(8)"™ = Q™ to all orders n.

3. TRANSFORMATIONS OF THE
HAMILTONIAN

In this section we derive a uniform bound on
CH + Iy 3a(f)(H + Iy }]. Let f be a smooth func-
tion on V with periodic boundary conditions. The
operators

$r(x) = f $r(x)f(x) dx

and

() = f () f(x) dx
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are self-adjoint and essentially self-adjoint on the
domain D of Sec. 2. We use the unitary operator

U = UV, f) = exp [igp(f)] 3.1
to transform the Hamiltonians H and H(p) of Sec. 2.

Theorem 3.1: For k < « and any s, orfors + 1 =
2, k < o0, we have

0L H £ mlf) + § £

0<H+ Ptanh §
+ (mp(f) — (Vép)(f) tanh B) + § |1 fll;. (3.3)
Remark: In a theory with a spatially cutoff Hamil-

tonian H(g), but no periodic box,*® our proof shows
that the corresponding estimate (3.2) for #(f) is valid.

3.2)

Proof: By Ref. 10, there is a cutoff-dependent and
B-dependent bound

£mp(f), £Vé,(f) < eN + const < H + const,
H + Ptanh f + const.

Thus the point to be established is the exact value
| 12 of the change in the vacuum energy caused by
the perturbations in (3.2) and (3.3). We prove that
(3.2) and (3.3) are unitarily equivalent, via the
unitary (3.1), to H and H + Ptanh f, respectively.
On the domain D, we have the convergent power
series expansions

HyU = UHy +3 3 ()

n=0 j=0
X [ig N mp(Nligp(NY,

HoU = U[H, + =p(f) + 3 [ f12). (34
Since D is a core for Hy, we conclude that U: D(H) —
D(Hy) and (3.4) holds as an operator identity on
D(H,). Hence

U*HoU = Hy + mp(f) + 2 I /13-
Similarly, as an operator identity on D(H,) <= D(P),
U*PU = P — (Vép)(f)-

Since U commutes with H;, U:D(H;) — D(H;) and
U*H,U = H;.

The operators H and H + P tanh § are essentially
self-adjoint on the domain D, = D(Hy) N D(H).
For H, this statement is proved in Refs. 6 and 7, and
the same proof is valid for H + P tanh . Thus
U*HU is a positive sclf-adjoint operator that is
essentially self-adjoint on U*D, = D, and on D;:

0 < U*HU = U¥H, + H; — E)U

=Hy+ mp(f) + 2 IfI:+ H, — E
=H + m(f) + 3 111
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The same equation holds with f replaced by —f, and
so (3.2) holds. The proof of (3.3) is identical.

Transformation of H by exp [im([f)] gives us

0<H+ f  B(dylx) + f()):dx + mid(f) — HAN
+ m? | f12+ 3 IVAI. (3.5)

We have not made significant use of this inequality,
but we remark for quadratic interactions, ¥(§) =
&2 + bé + ¢, the bound (3.5) leads to an estimate on
the vacuum expectation values (1.2) which is uniform
in the cutoffs.

We observe that, for s + 1 =3 and §(§) = § +
lower-order terms, the coefficient of &2 contains a mass
renormalization term which is divergent as « — oo.
Neither this divergence nor the divergence of E (as
k— o0 or |V|— oo) interferes with our estimates.
For s + 1 = 4, however, there are divergent counter-
terms containing :#%(x): coming from the field
strength renormalization, and, if these terms are
included in H, our estimates are no longer uniform
in the cutoffs.

4. ESTIMATES ON THE VACUUM
EXPECTATION VALUES

We use the time-dependent Heisenberg picture
fields

$i(x, 1) = e*F(x)e X, (4.1

where ¢, equals ¢, ¢, , or Vo and é(x), etc., is a time-
zero free field. Recall that the Hamiltonian H con-
tains a periodic space cutoff, and possibly a momentum
cutoff. We use the uniform estimates (3.2) and (3.3)

to derive bounds on the vacuum expectation values
of the ¢,.
For fe C7, the space-time averaged field is

Hf) = f (x, DF(x, 1) dx d; (4.2)

the fields ¢,(f) and (V$)(f) are similarly defined.

Lemma 4.1: Letk < 0w ors + 1 =2 and « < c0.

Then for feCy, #(f), ¢.f), and (V¢)(f) are
operators on D(H?).

For a proof of this lemma, see Ref. 8, Lemma
3.2.2. We have the cutoff-dependent estimate

160060 < IFTICH + D6l (4.3)

where |f] is some Schwartz space norm on f, and
¢, = ¢, ¢, or Vé, as defined by (4.1). The integral
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(4.2) is by definition a weak integral of bilinear forms,
and for Vé we can integrate by parts in (4.2) to
obtain (Vé)(f) = —¢(Vf). One can also show that

¢:(f) equals

fexp (itH)m(x) exp (—itH)f(x, t) dx dt
= n(f) = [iH, $(f)]

by evaluating [iH, #(f)]. This was proved for the
case k = 00, § + 1 =2, § having degree four.® The
restriction to § of degree four comes into the proof at
one point only, and is easily avoided. Namely for
such §, Hy + H; is closed and self-adjoint on the
domain D(H,) N D(H;) = D,, while for general ¥,
H, + H, is essentially self-adjoint on this domain.
As in Ref. 8, we conclude from (4.3) that C®
vectors for H are C* vectors for ¢,(f) and that

IH"$.()81 < Il ICH + Dy"HE6),  (4.4)

where |f|,, is a Schwartz space norm depending on
the cutoffs. Thus the vacuum expectation values
Q, ¢, (x1, 1)+ ¢, (X, £,)Q) are defined in the
cutoff theory. Here Q is the vacuum for the cutoff
Hamiltonian H. To obtain estimates independent of
the cutoff, we must replace (4.3) and (4.4) by bounds
derived from Theorem 3.1. From Theorem 3.1 and
the fact that H commutes with P, we have as bilinear
forms on D(H) x D(H)

OS<HZa(f)+3If13,
0< H+ Ptanh 3

+ (m(f) — (VéXf) tanh B) + 2 fl2, (4.6)

where f'€ C°(R?) and #(f) and (V$)(f) are the space-
time averaged fields (4.2). These inequalities extend by
continuity to D(H}) x D(HY).

4.5)

Theorem 4.1: Let « < 0o and s be arbitrary or let
k < o and s + 1 = 2. Then for 6 € C*(H), we have

IH ()01 + |H' V(O] < 1f1; I(H + 1+6).

The Schwartz space norms | |, are independent of the
cutoffs « and ¥, and they are independent of the
polynomial § and mass m which define H.

Proof: The case j > 0 follows from the case j = 0
and the commutator formulas

(Vo)D) = —[iH, (V$)( )]
and #(D,f) = —[iH, n(f)]. From (4.5), we have

(N}ruz)<H+%<H+I

=7(f) < (Sl (H + D). 4.7

J. GLIMM AND A.
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Similarly, from (4.6) and (4.7) and Theorem 2.1, we
have

(Vo)) < 31 fll (H + D). 4.8)
Wesety = (H + I)?0, R = (H 4 I)"L. Then we have

1=(F)01* = (p, R(f)*R?)
< ¢y, Re( /)Rn(fIR®y)]
+ [(p, RIR, 7)) f)R®y)|
< IRY(IRY)® )2
+ [(y, R*[n(f), HIR=(/)R*y)|
< IFI3 WCH + Iy)®
+ [(p, R*=(D,f)Rm(f)R%y)|
< (UFUE + U7 1s 1 DSl ICH + 1612,
4.9)

In deriving (4.9) we use the bound (4.7). The proof
of the bound on (V¢)(f) is similar, and the proof of
the theorem is complete.

Theorem 4.2: Let k < oo for any s or let k < ©
for s + 1 = 2. Then there is a Schwartz space norm
| | defined on 8(R'*+1") such that, for f' € S(Rl D7),
we have

lth(xy t)<Q: ‘i’\q(xl 4 tl) e ¢vﬂ(xvn ’ tn)Q> dx dt S lflﬂ ‘

If each ¢, is a 7 or a V¢, then the norm | - |, is inde-
pendent of «, V, m, and ¢.

Remark: In a theory with a spatially cutoff Hamil-
tonian H(g), the theorem holds if each g, is a .
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A review of graphical angular momentum methods is presented. As an example, the graphical methods
are applied to the coupling problem in the semiclassical first and second Born approximations with an
electric multipole potential. The general nth-order Born term is then considered. A simple expression is
derived for the matrix elements of the anisotropic terms in the potential. The evaluation of the remaining

integrals over time is discussed.

INTRODUCTION

In Paper I we derived explicit expressions for the
semiclassical first and second Born approximations,
using time-dependent perturbation theory with an
electric multipole potential.! We performed the neces-
sary angular momentum algebra by finding the correct
formulas in the standard books on angular momentum
theory. This is a rather haphazard procedure. It
would be much better to have a systematic method
of handling such problems which could be extended
to cases where we cannot find handy formulas in the
standard books. This can be done without the use of
diagrams, butitis much easier to use graphical methods.
We shall essentiaily follow the diagrammatic methods
outlined by Brink and Satchler?; proofs of certain
graphical procedures will also be presented. Our
diagrams will differ from those defined by Yutsis
et al® in certain rules and phases. This must be kept
in mind when referring to their book. Recently
Massot et al* developed diagrammatic methods
which :nclude the graphical representation of tensor
operators. The convenience of this is somewhat
outweighed by the added complication of the dia-
grams; we will carry the tensor operators along with
our diagrams. Only the essentials of the graphical
methods will be presented in Sec. 1. For more details
see Brink and Satchler? and Yutsis et al.3

As an example, the graphical methods will be
applied in Sec. II to the coupling problems dealt with
in Paper I.* The technique will then be applied to
the general nth-order Born term in Sec. III to yield a
simple expression for the product of matrix elements
involved. Possible methods of performing the remain-
ing integrals over time will also be discussed.

The graphical method is not restricted to scattering
problems®; any problem which involves the coupling

of angular momenta can be treated by the graphical
approach. The graphical angular momentum methods
can also be made compatible with some many-body
diagrammatic methods.®

L. GRAPHICAL ANGULAR MOMENTUM
METHODS -

The basis of the graphical methods lies in the
diagrammatic representation of the Wigner 3-
symbol’

(11 Ja j3)=
m, my, my

M

The node represents the coupling of the three angular
momenta. This does not correspond with the vector
diagrams drawn for the classical coupling of three
angular momenta. Ponzano and Regge® have recently
used such a graphical representation; however, it has
limited applicability in our work. The 4 sign corre-
sponds to an anticlockwise orientation of the node; the
— sign corresponds to a clockwise orientation of the
node. From the permutation properties of the 3-j
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symbols, we arrive at the relations

H. A. RABITZ AND R. GORDON

It is clear from this that a line without an arrow just
represents a ¢ function. We can derive a useful relation
if we contract a 3-j symbol with a metric tensor:

(_1)i1+iz+is. (2)

A rotation of the diagram does not change its meaning
since it corresponds to an even permutation of the
columns in the 3-j symbol. Likewise, a distortion of
the symbol does not change its meaning provided
that two lines are not crossed. The metric tensor” is
defined as

. , a !
( J ,)=(—1)j+m6m,_m:=M' (3a)
m m
Also note that
. P . .
=l - p IR, ()

The use of arrows will be discussed shortly.

The basic rule in using these graphical methods is
that two lines may be joined if they have the same J
and M labels on them. The resulting line is just
labeled by J if M is summed over; the summation is
implicitly understood in such cases. We illustrate this
with the unitarity relation of 3-j symbols,

sua(h 2oRy(h R ) = b
jams ml m2 m3 ml m2 m3
where [J] = 2J + 1. Graphically this is written as

J lml |

= T Qo)

(11 Ja js)
m, Mg —my

___Z(_l)ia-f—ma(jl j2 ]3)( j3 )
ma my, m, my/ \mz ms

= g (_l)ia+ma

V)

We see that a negative m in a 3-j symbol will produce
an arrow in its resulting diagram. The above relation
can be used as a definition of the arrow symbol.
Note that it is not possible to remove a single arrow
from a line, since this would correspond to changing
the sign on one m value in the 3-f symbol. Using the
metric tensors, we can derive some simple rules for
using the arrows:

jm jm; : :
11»11 =z( N )( Jl)
me \My  My/ \my my
= g (_ 1)251+m,1+m26m1,—mzamg,—m'l
im o dgm
e CR VL C
im o dm

>¢—— =2 (m{jlmz) (mljlmz)

— 2 (_ 1)2i1+m1+m'15mb_m25m,1’_m
me

\J
_3m ™

(5b)

Note that even if j is half-integer, (j + m) is an integer.
Hence,
(_1)2(J‘1+m1) = 1.

These results are useful since we can change the
direction of an arrow, provided that we are careful
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with phases. That is,

jm jqm; jqm jym!
11 11 ll»‘ll

jqm jmq
L

6

Another useful relation is obtained from
(jl j2 j3) =(_1)h+jg+js( jl j2 j3 )
ml m 2 m3 hant m1 - m2 - ma
and the fact that
n; + My + my = 0.
Writing this out graphically with the aid of Eq. (4),
we arrive at the rule that an arrow can simultaneously

be added to eachline around a node, provided that they
all point in the same direction:

™

M

The last step follows from applying the rules for
changing the direction of arrows in Eq. (6).

Using these rules, we can write out the diagrams
for any complex summation of 3-j symbols. If the
resulting diagram has no open lines (noncontracted
lines), then it will represent a 3n-j coefficient. As with
most diagrammatic methods, their topology is very
interesting. In fact, the symmetry properties of the
3n-j coefficients can be obtained graphically by
identifying the rotation group that describes the
geometric properties of the diagram. It can be helpful
to construct 3-dimensional models of the diagrams.
However, the definition of the 4+ or — sign on a node
must be modified for the 3-dimensional case.
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The equivalent diagrams for the 6-f and 9-f symbols
are

{fl Je ja}__
ll 12 13

= (8a)
2
A (8b)
hy

There are other ways of writing out these diagrams,
but they are all topologically equivalent. In fact, it
is a general rule that all topologically equivalent
diagrams will represent the same algebraic expression
or symbol (perhaps with the addition of a phase
factor). The general study of the higher 3n-j symbols
is very interesting in itself. It is sufficient to say that
it is possible to generate all topologically nonequiv-
alent 3n-j symbols from all the 3(n — 1)-j symbols.
For more details see Yutsis ef al.?

In applications, we frequently have diagrams with
open lines, i.e., lines with noncontracted projection
quantum numbers. Such diagrams can be represented

-by a general block of contracted lines with open lines

coming out as follows:

—3™
im.
A 22=F

(1'1 Je
A4
1% My Mg

The label A represents the particular arrangement of
the contracted lines. Any F( ) can be written out as

’i';) (9a)
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a summation over a product of 3-j symbols. All
internal (contracted) lines must have arrows, and all
external lines must not have arrows. Such diagrams
are called normal diagrams. Only normal diagrams
arise in physical problems. The F,( ) are frequently
called JM coefficients. The simplest nontrivial case is
just the usual 3-f symbol. In general we can write

FA<j1 e ]n)

m ccom,
= Z( l)zh(lh+"lh)( l 12 jl )( ll 13 l4)
{n3} m; np mMy/\—n Nz hy

i=1

bk By
—hg my; Mg n,

where the phase factor guarantees that the diagram
is in normal form. The JM coeflicients can be looked
at as the coupling coefficients for the states ¢(jim,),

-t j"), (9b)

n,_, my

(jarms), * * * , $(jm,) up to a state with zero angular

momentum. That is,

|j1j2 o 'jn00>A

=3 FA(h Jn )¢(jlml)¢<jzm2> e G
{mi} m, m,

The states are in reference to some space fixed co-
ordinate system. This definition of F4( ) could also
be extended to the couplmg up of tensor operators
T% to a resultant T 4. We shall later use them for
this purpose. With these definitions the 3-j symbol
couples up three angular momenta to a zero resultant
state. To see this, we note that

| jijejsms) = z [Jamy) | jamg) (jamyjame |j1f2j3m3) ‘
mim2

and

z | jsms) | j1Jejsms)

mams’
X {(jrjajsms)jsms | (j1J2J3)7500).

Writing the coupling coeflicient in terms of a 3-j
symbol,’

|j1j2j300> =

((Jrjejsms)jams | (J1J2Ja)js00) = (13 ]3," )
ma m;y 0
( l)ﬁa—ms
TS L
we get
c . ( 1)”—
|j1727500) = E |jsmg) |jrjeja — ma)
ms3 ([]3])

= (=1yritn 3 (jl Ja ja)

mime \IN; My Mg
X | jimy) | jams) | jama).

H. A. RABITZ AND R. GORDON

So we see that F ( ) is essentially a 3-j symbol if 4
represents a single note. We could extend this to a
generalized Wigner coefficient :

(jl Jo 0 n)

ml m2 * .. rr’ﬂ ?

where the diagram for such a coefficient has a mini-
mum number of contracted lines. See Yutsis et al.?
for details.

From the definition of F,( ) as the coupling
coefficient up to the state |00}, , it is clear that

n
>m,=0. (10a)
=1
Now we shall see that
a =Y j, = integer (10b)
i=1

for the j; in the open lines of F,( ). Consider a
rotation by = of the state |, - -+ /,00),,

R(m) = R, (m) X Ry (m) -+ X R, (m),

where R, acts on ¢(j;m,) in the fashion

R,,(w)zﬁ(],m) = z Dm( m.(w)¢(]:m:)

Di, (&)1 is.- th¢ rotation matrix as defined by
Edmonds.? We now use the relation

D:n',m(’n-)' = (_ I)H.mam,—m’
to obtain

R(7) |j2- - Ja00)4
jl “ e j
=D F "

% A(ml )

m”
X Ry (m)¢(jymy) - - - R; (m)y(j,m,)

=S R0

X D (@) (D)« + Db () jur)

=SRu( e
X ¢(jy—my) - $(j, —m )

Note that 7 m; =0 to eliminate it from the
phase. Now apply the reverse rotation R(m) =
R(—m). Again we use the relation

Dfn'.m(_ﬂ) = (_l)j_mam',—m

to arrive at
e 200 = (=1 E (B )
mi m, *°-° m,
X $(jymy) -+ * $(j.my).
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We conclude that

a =Y j, = integer
i=1
by comparison with the original definition of
[j1°j00), . Another useful relation is

==(.-1y1¢1(11 o ’"). (10c)
m oo om,

This relation is evidently true from the last derivation
if we note that

R(@) 11" Ja00) 4 = [j1" " Ja00)4.

This follows because the state [00), has no spatial
dependence.

We are now ready to derive some powerful rules for
manipulating diagrams. These simple rules essentially
justify the use of the graphical methods. We want to
show that the following operations are valid if the
left or right block is in normal-form:

E5

6.1'1.0 4

(11a)

Ss.1
L’
(11b)

(11c)

For four or more connecting lines we cannot simply
cut the diagrams; but we can utilize the relation

3™ 3™

to reduce the number of connecting lines to three, and
then cut the diagram. Appendix A discusses the
general n-line cutting rules. Note that a line from a
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block really means

1 im
33

To prove these rules, we shall use F,( ) notation.
Consider

FA(jl Je fs)
m my; My

— Z(_l)zh(lh'l'ﬂh)(ll ly 7 )
{ns}

n, ong m

(BB Ry (h b )

—n; ng ng my —n, R,
where A can be any arrangement of contracted
angular momenta and i = 1,2,-++,r. We now use

the following relation between 3-j coefficients and D
matrices”:

l l l
( v b ) = 3 Di. (@)D", ()
m; My my m'im’zm’s

x D iran’s.ma(w)( ll 12 la )
my my mg/
Note that w is purely arbitrary. We want to expand

each 3-j symbol in F( ) using the same w:

FA(fl Ja js)

m, mg mg

=222 2

{ni} {n'g} {n"s} m'1m’am’s

(_ 1)2»( In-+na) (ll 12 jl )

!’

nyomy omy

X ( ll 13 14)(13 lr lr—l)Dh' (w)
—ny ny ng mg —n; n,_, e
X Dl—ln”l,—m(w) T D;ll'l.mx(w)Dfr:’a.mz(w)Dzr::’s.ms(w)’

where {n,} — {n]} and {—n;} — {—n]}. Notice that
the projection quantum number for each internal line
occurs on two D matrices. Now we use the orthogonal-
ity property of the D matrices:

; (- 1)_l{"ﬂtDL"‘,”‘(G))Dl_‘n,,"_”‘(w)
= nz‘ (- 1)~“’"‘D:l".~.n,-(w)D£f~‘-_,,‘(w)(— s
= (_l)li+n’,- S

If F,( ) was not in normal form, we could not use
this relation. This is why one of the blocks in the

0"

coupling rules must be in normal form. We apply this

to get

FA( 1 J2 Js) - 2 FA(JI, Jz, 13')
m; My, mMmg m'1,m'g,m's my m, mg

X DZ;H.mx(w)Dﬁ'a.mz(w)Dzz’S-m'(w).
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Now we multiply both sides by (8#%)~! and integrate
over w. The right-hand side integrates to a product
of two 3-f symbols”:

FA(jl Ja js)
=(jl s ja)
m; my ms
x z F.A(jl, jzl j3’)(jl’ jzl fsl)
m'im'am’s my my mg/ \my my Mg
= (3n-j coef.), X (h Je J"‘).
my

my mg

The sum over m;, m,, and m, is a closed diagram in
normal form or a 3n-j coefficient. We now have
essentially proved what we wanted if we transcribe it
to graphical form:

3™y
jm
i N\, ™
A s A <Jz“‘z .
i.m.
=33 13 33113

If we had attached a block B to the right side, we
would get the three line cutting rule. It is not necessary
that B be in normal form since only 4 and its three
external lines enter into the derivation. The other
cutting rules can be obtained with the help of the
relations

i Js O\ 8.0, . .
(]1 Ja )= J1dz ,m‘é z(_l)n—m1,
m; my; O [j1]

i 0 °)=a 8

(m1 0 0 71,.0Ym1,0°

N 2™
™
3™ M

Ay

As a last note, we must remember that all three

angular momenta coming from a node must satisfy

the triangle relations for angular momentum coupling.
We now have all the basic rules for handling open

and closed diagrams. Their usefulness will be illustrated

with a few examples in the next part.

II. GRAPHICAL METHODS AND THE FIRST
AND SECOND BORN APPROXIMATION

We shall rederive the angular momentum coupling
in the first and second Born approximations with
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multipolar potentials as examples of how the graphical
methods can be used.! As we shall see, it is no longer
necessary to fall back on “formula X in book Y to
calculate the necessary sums over the projection
quantum numbers. Using the graphical approach,
we shall derive all the necessary relations we need.

It is useful to start at the beginning and write out
the diagrammatic representation of the basic matrix
clement,!

<ni| T—y Inj>5

T, = z (hmylym, l L)Y (1) Yigmo(F2),
mime

where |n;) = |J7iqK,) |JqhiK,) are symmetric top
wavefunctions and /is a dummy index. J is the rota-
tional quantum number, g its projection on the space
fixed axis, and X its projection on the molecule fixed
axis (note that J, ¢, and K are integers). The subscripts
1 and 2 refer to the two molecules. Taking the in-
dicated matrix elements over the spherical harmonics,
we get

() T,_, Iny)
i YA S T N

— _1 Ki1+Kat+ir "+ig
(=D ( (477)2 )

(b

-k, 0 KJ\-k, 0 K,
x(bob )R E )
mime \My My —7 _q1‘ my QIi

N N

Jz )(_ l)n”‘+a1"‘+1z"'+as"‘+z+y
n,

my gy’

« ( O
—4qz
We now want to represent the sum over m; and m,
graphically:
(nil T'l-—y In1>
o (K ([11][12][l][ji"][j;“][ji"][j;”])*
(4m)*

x (J'I“ L i{")(jé“ [ j;")
-k, 0 K,/J\-K, 0 K,

ni n;

. n. .
]I C||' J|‘

o
q’
—¢

£y

.n'| n-I .nj I'Ij
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n; nj Note that the diagram is in normal form, as it should
9 WG be. We now apply the two line coupling rule in Eq.
—4 ¥ (11b) to the open lines:
! +
? !
— h(l, mam) —- . (120 y 1
Lo 4 = M f, DA, i, f) "
+ 2 AT o4
—4— WHIRHIU; o
0 i qn
Py qa I’ 92
where ¥

% (~1 jaf+h‘+ls‘
h{, n;, n,) (=D

n The added phase factor comes from changing the

3 nj

= (1) +K1+K2([11][lz][l][1 ][12 21U ]) sign at one node. We can now split out the “bubble”
(4m) in the middle and use Eq. (3a) for the line on the right:

x ( jiooh J'I”)( j2 jzj). (12b) h(l, f, DHA(, i,f)ay._vl(_1)l+v+izf+:iz‘+lz
-K, 0 K;/J\-K, 0 K, A, =

Ll

We will treat h(J, n;, n;) as a numerical coefficient.
With this graphical representation of the matrix
element, we now have the basic building block for the
diagrams in the first and second Born approximations.

The first Born approximation for the transition
probability can be written as?

! ST, 1)

P ooty 7 [

Splitting out the bubble again, we get
X Gl Ty 1) L DI Y), g, We g

h(l f, Dh(l, i, )b [ axagiiaaring?’
where I;(ly) is an integral over time defined in Eq. p=y(=1)

P (i—f)=

(20b). [JI][Jz][lll[lz][l]
We are summing over initial and final projection
quantum numbers. It is not necessary to do this;
however, the resulting nonsummed expression would
be more complicated. We want to focus on the
summation
) Sl Ty 1D Tieyp 1S Now we note that
2 = — .
arfer’ aatas’ ([j11lj:D
This can be written out in graphical form by using
Egs. (12):
— z (.’1 j2 .]3)(.’1 j2 ]3) - 1
m.llmszls ml m2 m3 m1 mg m3 )
h(l, f, Dh(, i, 1)

(13) This finally results in the expression (after changing
a few signs at nodes and removing a few arrows)

_ h(l’f, l)h(l, i, f)ay__?,(_1)7+f1‘+i1’+:iz‘+j2f
WHIVAIY AU

2—_‘_

Liallje]
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This now yields for the transition probability
h(l, £, Hh(, l-’f)(_l)h‘-i-hfﬂ‘a‘-rh’
FHIRAIEYLS]U]
X 2 (=LA A —y). (14)
Y

If the A’s are now replaced by their algebraic expres-
sions, we will arrive at the same result that was
originally obtained algebraically in Paper I.

As a final example we will do the angular momentum
sums for the second Born approximation. The second-
order transition probability can be written as!

Py(i—f) = 3 Ado(L v, V)IEL ", ¥"), (158)

7’8

Py(i—/) =

where
Ay = (U™ 2 ] Ty I in] Ty 1)

X (| Ty W) (0| Toeye | ). (15D)
We will concern ourselves with the calculation of A4,.
L(l, v, v") is a second-order translation integral defined

in Eq. (20b). As before, we write out the graphical
representation of the matrix elements:

Ay = (UtlliD ™A, f, myh(, 1, DR(, i, n)R(A, w0, f)

(15¢)

It is worth noting the similarity of this diagram to the
one for the first Born approximation. As one might
expect, this circular ring character can be generalized
to the nth-order Born approximation. We will show
this to be true later. It really stems from the rotational
invariance of the transition probability. If the initial
and final projection quantum numbers were not
summed over, the circle would be broken. This ring
character would also arise in any perturbation theory
(whether in scattering or not), if the potential is ex-
pressed as a sum of spherical tensor operators and the
basis is in the angular momentum representation.
There is no unique way to proceed with manipu-
lating this diagram. We want to be guided to a final
result that can be easily evaluated numerically.
Certainly, whatever outward form the final results
take, they are all mathematically equivalent. Since

H. A. RABITZ AND R. GORDON

there are four open lines we can no longer split out
the inner circle. For simplicity we shall only be
concerned with 4, the diagram in 4,. It is instructive
to note that 4, can be written as

A_d = EZ,‘[Z]

This is of little practical importance since the closed
diagram is a 21-j symbol. However, this is what one
would expect for the second Born approximation.
The potential is a sum of products of two tensor
operators [Y; ,,, (1), (2)] which are coupled to-
gether. Since the potential enters four times in the
second Born approximation, we are coupling together
eight tensor operators to form a scalar. This coupling
of eight angular momenta is represented by a 21-f
symbol.

We shall proceed with 4, by first breaking it into
a product of smaller pieces and then putting the
pieces back together in a different fashion. 4, can be
written as

d=3

all m’s
B )
£1m Kmy By 22 Iamg
X
A A Ly
.
£ £
+ <51 - < 32
o
Ly 4y il )
n' n n' n
% 1 e 2 12
A 4 & A 4 4
Ly Lym) %om5 5m)
» L gy
+ i + - -
iy 3

We shall now just focus on the rectangular diagrams;
they can be written as a double sum over dummy
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angular momenta X and Y:

2 [x1ry]

XY

We have changed the signs on the corners of the
second rectangle, but this does not give a phase
factor. Each of the rectangles can now be split on
the three lines connecting the right and left sides to
give

> (=1°[x](Y]
X.Y

where 6 =i +j/+ji+j]+ X+ Y. The phase
factor comes from changing the signs at two nodes.
Since these triangular diagrams are 6-j symbols, we
have [by replacing the rectangular diagrams in Eq.
(16) with the last expression]

Ty :f Y] .f
A= 3 - A A
XY L L J? L L Jt

N {_f; i Y}{j;' i Y}
12 12 ]g lz 12 Jg

OF MOLECULAR COLLISIONS 3347

oy g

(17
We now want to evaluate the sum over the m’s. This
sum can be written in the following form:
l @ -

P o -
»
L 2y "
- Y -
»
% Y /
2
" "
s

This can be written as

> [z] x
Z

A
P
»
) Y
Y
\A
+ v 7 +

This diagram can now be cut along the three lines
labeled X, Y, Z to get

2 2]
z

X (_1)X+Y .
The phase factor comes from changing the signs on
two nodes at the left hexagon. These hexagonal
diagrams are 9-j symbols. Writing these out, we see
that the above expression becomes

L Y LY(Z Y X
Sz -nXrEemsly z 10,
Z,mgz

L x U o1,

(z I 1)( Z ! 1)
x ’ /4 ll.
mg vy Y/\—mgzg Yy y
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We can now permute the columns of the 9-j symbols

and reflect along a diagonal to give another factor of

(—=1)XtY*Z_ finally getting
X Y z)?
PINYA G VA F N "
Z.,mz
Lol

(z I 1)( A I l)
x r " II'
my y Y/\—mgz y" yp

Plugging this expression back into Eq. (17) gives
/L —_ 2 [X][Y][Z](_1)X+Y+7’1‘+7’1’+h‘+iaf
XY.Z

y {j{ i X}{j:‘ fi X]
LohL oLt

e X Y Z\®
i 2 :4 ]
% {]12 112 }{le 12 '"’} hohd
J J
2 l2 2 t2 Ja Lol
zZ 1 1 Z 1 1
x z (—])mz ! n " :
mz mgz ¥y y/\—mgz y ¥y

(18)
When we put in the factors of #( ) from Eq. (12b) and
A, into 4,, we will arrive at the same expression for
P, (i — f) that we originally obtained algebraically in
Paper 1. We will not write this out in detail, but we
can check the phase. Algebraically we arrived at the
over-all phase (—1)/"+s"+1"+i"+X+¥ Now graphi-
cally (with the phases from the A’s) we get
(— 1)X+17+j1‘+hf+a'a‘+hf
X (_1)i1’+h"+i1"+:iz‘+11‘+i:"’+h"'+:izf

— (_ 1)X+17+.7'1"+i2"+i1’“+1z"’.
So the phases check.

We have derived the same expressions for the first
and second Born approximations without pulling any
punches. It is always possible to do the necessary
manipulations algebraically, but it can be very compli-
cated and difficult at times. Graphical methods provide
a rapid and efficient way of handling angular momen-
tum coupling of any complexity. Itis worth noting that
the phases can also be derived graphically, as we did
above.

III. GRAPHICAL METHODS AND THE
nth-ORDER BORN APPROXIMATION

We can at least formally write out an expression
for the general nth-order Born approximation with
a multipole potential in the impact parameter frame-
work. As we shall see, it may be possible to compute
efficiently some terms of order higher than second.
The problems involved are essentially twofold: the
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angular momentum algebra and the Born integrals.
One must also be able to treat the mixed terms or
interference terms between different orders in the
Born series expansion. We shall show how a general
formalism can be set up and how one may compute
these terms up to perhaps third or fourth order. The
angular momentum algebra will be treated first,
followed by methods of evaluating the Born integrals.

First we write out an expression for the Born
expansion of the S matrix®:

S = z(_’) - (19a)
p=0
where
00 tr _ tp—1 —
S, = P(t) dt, f V(ty) dty - - f v(t,) dt,.

(19b)

We are in the interaction representation, hence
17(‘) = efHof/fV(t)—iHot/t’ (190)

where V(¢) is the intermolecular potential and H, is
the unperturbed Hamiltonian.! S, is an operator above.
If S, is put into matrix form, the initial and final
states will be connected through p — 1 intermediate
states. The states are |ny), [#5), * - -, [n,_,), where |n)
was defined in Sec. II. The matrix elements of S, are

<f| So|i> = <f| 1 |i> = 6z'fa
S8, 11y = ZZ FI Ty 1) I, ),
flSe1) = Z Z 2 I Ty Ind (g} Ta 1)

Lryy n

X 12(1, 1 s VsV )s
(20a)

(f'S [ =Z”ZZ<f| T—y|n1><n1lTll—vl|n2>

n's

X (ng| Tya_ys [n3)

X oo X (ny | Tyr1

210 ({1 v}),

where

+ o
L) =5 f £t dts,
-+
I(1, ll’ Vs 71) = ooyt fylf n1(t1)f fyl ni, Lt2) dty dt,,

(20b)

L{{Ly}) = Hocuc

f f‘yl ni, ng(t2)
xf _fi’;ﬂ,,,,,_,,i(tp) dt, dty - - - dt,,

fy 7. nl(tl)
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and
"ﬂ'n n’fY (Q)
ﬁﬁﬂﬂ:ﬁ?“%ﬁ;p
where
W lIn) = 10) = H(ln) — In'),
_An(=1)"®(  4x2l+ D! )%
T m (ah+-nuy2+1ﬁ 2uQe,-

Hy, 0, , and Q,, are, respectively, the unperturbed
Hamiltonian and the electric quadrupole moments
of order /; and I, . Papers I and II describe I; and I,
in detail.?** When the sum over the /’s is performed,
we mean to imply a summation over /, and I, as
well. This is needed in order to consider the general
multipole potential

V) =2 V), I=0hL+1,.
1

In practice, this sum will be taken up to some value

lma,x .
The transition probability is written as

1

[Jj 1][]2] #1 m’ uatpef

i#f
(21)

The summation is over initial and final projection
quantum numbers. We want to examine this sum in
detail. First note that, since T, is a spherical tensor
operator,3?

Pi—f)= > [SIs i)

(n| T, In")* = (1) (n'| Ty ).

This means that the complex conjugate matrix
element can be written as

SISy 10t = 3 35 1 Tios 1) (il Ty 1)
I's V'8 @'s
X+ X <ﬁ,,r_1| Tlp’—l_T,p’—l |f> I::({i, Ps I’_l}) (22)

We have made use of the fact that! ¥, (Q) = Y,,(0, 0)
is real. This implies? Y}(Q)= Y, (Q)(~-1) =
Y3,(€2). Substituting Eqs. (20a) and (22) into (21), we
arrive at the expression for the transition probability,

_ip+p'
PG-N=3333 5 3 (—) ST Iy

7 pitpa? patpef \ A

X v X Ny | T | G Ty |y
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X (nll Til—vl |n2> _1l sz ~1yp'~1 |f)

L({L . mDIZL 3, 7).

23
WHITH *

This expression includes all the cross terms between
the different orders of perturbation theory. Now we
focus on the summation over all the projection
quantum numbers in Eq. (23):

DY 2 2 I I ) T lng) x -

aq 1t pafue’

X (n, 5| Ty~ w2 | (| Tz lAy) X -+

X (| T ==L f). 24
If each matrix element is considered a link in a chain,
then this sum is a closed chain (note that the state
|f> is on the right and left ends in the sum). This
observation leads to the basic structure of the graphi-
cal representation in Eq. (24). Without any loss of
generality, we will change notation a little and con-
sider the more symmetric sum

{ny| Tz..y [ng) (nyl nlyl [ng)«--
L1 j2]

Ny Tyema_yr—s[my)

Ar=z

(25)

There are r matrix elements in the sum. In Sec. II
A, and A, were considered for the first and second
Born approximations, respectively. Again note that
the sum in Eq. (25) is over all projection quantum
numbers.

Now the task is to express Eq. (25) graphically and
evaluate it in some convenient form. This is done by
building up the diagram from the basic matrix
element in Eq. (12):

(| T,y lny) = h(l, n;, ny)

.Nj ni .nj n;
Iy oa i oa!
—¢ -
4
Ir
y -
Ip
—e +
.n: n LN n;
iy A ! ay
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Using this, we see that 4, becomes n, + Ny

g
- =1 p(I¥, n;f+1,'nk+z) ' , (26)
#=0  [jlljel

fe-g

L
where n,=n.
Equations (13) and (15¢) are special cases of Eq. (26). Each of the open lines couples with a tensor operator
Yy ,(Q), j=0, 1,---,r—1, in the Born integrals. We want to concern ourselves with the circular

diagrams 4,. We shall follow the procedure outlined in Appendix A. The two outer circles can be “pinched”
together in the following fashion:
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In this form the diagram can be split into pieces. Note that each diamond-shaped piece can be con-
sidered to have three open lines connecting it to the remaining portion of the circle (including lines like
ly). Since each diamond figure is in normal form, it can be split out:

This can be continued around the circle until all the*“diamonds” are split out. Each of the split out groups can
be deformed to a symmetric diagram, a 9-j symbol:

X (_l)lz+iz"‘1+h"2+l+X1+Xz
X, X, I

={jm jr |, (_1)X1+Xz+11+h"1+h"n

ot b
X, X, 1

. . n n
—_ _]{“ ];la 11 (_1)11 1+t

T LS A
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Using this result, we see that 4, becomes

i—1
X, X |
i . PR TN TS RS M) R o |
4, = [Xi}(—D it i
X’ i=1 1
i smeer  Jie
jzt o jatr I
X

where n,., =n; and X, = X, by definition. The
circular diagram that remains is a product of 3-j
symbols, each of which has one free index /Fy?,
j=1,2,+--,r — 1. This diagram is not a generalized
Wigner coefficient® as defined by Yutsis ez al. This is
true since the number of contracted angular momenta
is not minimal. By using Eq. (35) in Appendix A,
expressions can be derived for A4, which have a
generalized Wigner coefficient for the remaining open
diagram. This would have three fewer dummy angular
momenta (X - - - X,_s), but it would be less symmetri-
cal.

We have now reduced 4, to a useful expression.
-The 9-j symbols are not too difficult to handle. The
triangle condition on the arguments in the 9-j symbols
reduces the number of terms in the summation over
{X;}. Now we substitute Eq. (27) into Eq. (26) to get

1 r r—1

z H H h(lka Npivs nk+2)

Lifllj3] &% =1 x—o0

4,
X, X, I
X [)(i](_1):i1"‘+hﬂ"+‘+l2‘—1 ];L' j;‘iﬂ lzi—l

N -, i—1
FEE sl

(28)
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If Eq. (28) is applied to the first or second Born
approximation, the results will not appear like the
ones derived in Sec. I or Paper 1.} However, both
results are equivalent; appropriate manipulation of
the diagrams or symbols will show their equality.
For the general case we have derived a formula which
applies to all orders of perturbation theory. It may
well happen that, for, say, the third Born approxi-
mation, a more convenient expression exists than
our general result. One can endlessly manipulate the
diagrams to any desired form in a particular case.

The remaining problem is-to calculate the integrals
I,({l, v}) in Eq. (20b). It is possible to obtain asymp-
totic forms for these integrals in the limits o, ,» — 0
and w, , — co. This is done by looking at the
asymptotic form of the integral

t
f oY dt.

However, we would like a more general result for all
o, . The basic problem with these integrals is their
rapidly oscillating integrands. Ordinary quadrature
procedures will not work with such integrands.
However, we have found two possible approaches:
the one considered in Paper I' for I, and an extension
of methods used by Griem et al.1!

In Paper I we approximated the smooth portion of
the integrand by a sum of exponentials in time. The
smooth portion of f} , .(t) can be expressed in terms
of (1 + 2% z=uotfb. v and b are the relative
velocity and impact parameter, respectively. This
function is replaced by

ay-k—% & ~81z2)
(1 + 2 —,,2 Cylk)e?e),
=1

B* ~ 10 for a good fit.!? The coefficients Cy(k) are
determined by requiring the functions to be equal
at several points. The remaining integrals can be done
analytically, and the results are quite accurate® (to
2 1% or so) for 0 < x <10 or 15 with I,.
Griem et al!! evaluated integrals similar to 7, by
obtaining the real part of I, and expressing the
imaginary part in terms of a principal value integral
over the real part. This procedure can be extended to
obtain the integrals I, by a recursion procedure. The
method is based on the fact that we can get the real
or imaginary part (not both) of the pth-order integral
in terms of all p — 1 lower-order integrals. Cauchy’s
integral theorem!? can then be applied to get the
remaining real or imaginary part. The complex con-
jugate of I, will be needed to show that the real or
imaginary part can be obtained from lower-order
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integrals. First consider that

e oy, (Q

Pty = -0
s (b2 + v2t2)v}(l+l)

since Y;,(Q) is real (the azimuthal angle is taken as
zero). Also note that

:n,n'(_ t) = (~ I)Hny.n,n'(t)'

This follows from the properties of the associated
Legendre polynomials. Now let {f;} —{—¢} in
IX{l, y, n}). This gives

p—1 — 0
I3 70 ) = (1P T o= f Fr () dis

t
1
X f;‘.n1.nz(t2) dt2
-+o0

$p-1
-1
y?-1,np-1 ,i(tjl) dtp .
-+

X X (29)

Note the change in sign on the lower limits of the
integrals. This integral can be rewritten by using the

relation
t ~+ a0 t
[T
+oo —® —o
Equation (29) now becomes

(L v, n})
-1 o -+ o0 .
= (=17 T an~1" f 1ot di,

(=T htos
xx[ (- ) ] @0

It is useful to define two quantities to see the structure
of Eq. (30):

ti-1
i-1
Ai =J fly"—l.m—p'ni(ti) dti ’
—a
teo 1i-1
Bi =J‘ fyi‘l,m'—l.ﬂi(ti) dt1 .
-

A; and B; are to be interpreted as integral operators.
With these definitions, Eq. (30) becomes

p—1
Bl ron}) = (=077 [T ap(= )7
i=0

+ 00 D
X I35t dty I_! (4, — B).
—~0 i=

There is one term in the product of i/ that can be
written as [ ]2, 4. This term gives rise to I,({/, r, n})

=2
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again. Hence,

I:({l’ Vs n})
= (_l)apﬂlp({l; Vs n})
p—1 40 D
=0 [ ) an TT (4 = B
where a ®
P

D P
H'(Ai - Bz') = _1:]2_-(141' -~ B) — _];!Ai
and B B N

-1

4, =2(l’ + ¥+ 1.
=0

Rewriting again, we arrive at

Re
{ } 1,0 7 1)
Im},,
p—1 400 P
= —1% Hoalk f)l'.f,m(tl) dt, II; (4,— B), (31)
k= -0 T=
where
{Re} _ {Re, n even
Im/, Im, »nodd.

This is our desired result; the real or imaginary part
of I,({], y, n}) can be obtained depending on whether
d, is an even or odd integer, respectively. The right-
hand side is a sum of products if I,, where s =
1, 2,--+, p—1. So, if we have the integrals up to
order p — 1, then the real or imaginary part of 7, is
determined. This is the key that allows us to get the
Born integrals by a recursion procedure. There still
remains the problem of getting the remaining real or
imaginary part of I,,.

The integral 7, can be considered to be a function
of the p-independent frequencies wy, , Wy p,s" ",
w, i and the impact parameter and velocity. By an
appropriate change of variables, the integrand can be
made a function of the dimensionless independent vari-
ables z; = ., 0/b, 23 = W, b0, * , 2,= w0, _b[v.
Suppose we remove the independence of all the {z,}
and define the dependent variables

=4, = "zl/(P - D+ 8,

where the §, are treated as constants. There is a reason
for doing this. Using the above definitions and the new
dimensionless time variables x; = tp/b,i=1,--, p,
we see that the exponential in the integrand of I, has
the form

exp (i ix,.z,)
=1

= exp (izl[(x] — X))+ (o —xg)+ 4 (x — x,,)])
r—1

P
X exp (in,ﬂ,)-
j=2

i=2,3,"",p,
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I
Aiz0

/

%

F1G. 1. z, is plotted as a function of z, for various §; values.

Now consider z, as a complex variable with Im (z;) >
0. Then e*x1@1—2)(#-1) 5 0 a5 |z,| — 0, Im (z;) > 0.
This follows since x; > x; or (x; — x;) > 0. We had
to sacrifice the independence of the {z;} to get this
result. This is not a serious problem since the {8,}
can be varied independently. Figure 1 shows how z;
and z, are related for different values of f8; (z; and
z, are real here).

In Appendix A we show that I,(z;) is analytic in
the upper half-plane. Now the results in Appendix C
can be applied to 7,(z;). The two Hilbert transform
relations in Eq. (CS) can be combined to form

Re 1 J' oo <Re} N s
I =~P —_— I(z) dz.
{—Im}am ()= P) 7 ), Y 48

(32)

So we now have the remaining part of I,(z;). Note
that 7,(z,) is still a function of {f,}. The question is
how accurately can the principal value integral be
evaluated. The integral in Eq. (33) will show what is
required:

Pf“ﬂ.z)_dz.

— z

(33)

The singularity in a principal value integral can always
be isolated, as in the above integral. The remaining
integrals from —oo to —a and a to o have no
singularities and are well behaved [assuming f(z) is
well behaved]. These integrals can be handled by
appropriate quadrature methods. Now consider the
integral in Eq. (33). First note that

+a
Pl &
—a Z
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Hence,
f(2)dz _ [T f@) —f (0)
P it
f-a z f—a z
f *f(z) ~ f(0) (0)
—a z

The last step follows since as,z — 0,

0
f(z) — f(0) f() ).

We assume lim f ’(z) as z—0 is well behaved (i.e.,
finite). This procedure essentially removes the singu-
larity at the origin. However, we now need the
derivative at the origin. This could be a problem
since f(z) will be a numerical function in general.
This implies that eventually the recursion procedure
for I, will break down. The inaccuracy of the numeri-
cal function will not allow the determination of its
derivative. However, with the usual quadrature
methods it should be possible to calculate the third-
or fourth-order integrals before numerical instability
sets in.
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APPENDIX A

In Sec. I we derived the I-, 2-, and 3-line cutting
rules [Eq. (11)]. We would now like to consider the
general n-line cutting rules. These rules are used in
handling the general Born term. Yutsis et al.® derived
an n-line cutting rule by using the properties of
generalized Wigner coefficients. We shall use Eq. (11)
to derive the general case.

With the help of Eq. (3c) the general block with
r-lines can be written as

F =
l Iy ‘ 32'“2— ——————————— l;nmn
" (Ala)
=2 [X;] - [Xan)
{Xq}
X xz X
x| & 4 4 o= ----- 2 Al
Ll'“l LZ"Z 3™

(Alb)
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This may require other “dummy” angular momenta besides {X;}, but they will be hidden in the blocks
{4,}. Now repeatedly apply the 2- and 3-line cutting rules in Eq. (11b) and (11c) to obtain

Fq= 2 [Xa]: - [X,0]
{xi

Note that there are (z — 3) “dummy” angular
momenta {X;}. The remaining open diagram is a
generalized Wigner coefficient.® It is possible to
derive other cutting rules which end up with different
generalized Wigner coefficients by breaking up F, in
a different fashion; i.e.,

Fg=21[X]""[X,,] %
{X:}

1y

(A3)

It is interesting to note that repeated application of
Eq. (11b) on the closed diagrams in Eq. (A2) will yield

Fy=3[X;] - [X,]
9.4}

X A
jl j2 33 se e jn—l jn
pY Y - ¥
- Xz - X; xnv—2 -
bt N L TG B U g+ 3 (A%
1my [ Jp-1"n-1

im s

I (A2)

n

3 I n-2"n-2 J0-1"n-1

We would now like to consider a cutting rule that
does not end up with generalized Wigner coefficients.
Again, with the help of Eq. (3¢), F, can be written
as
FA=Z[X1]"'[X1¢]

{ X}

1

—&
<

X A 2 4, L —— _+x“ Al . (A5)

1

] M

This construction may seem artificial, but it arises
quite naturally in treating the general Born terms.
Repeated application of Eq. (11¢) yields

Fy=21[X] - [X,]x
{X:}

\ 4

Tomy ™y

(A6)
Although there are n “dummy” angular momenta in
Eq. (A6), the resulting open and closed diagrams are
more symmetrical than the ones in Eq. (A2). The
methods leading to Eq. (A6) were used in Sec. III to
derive Eq. (28). Finally, note that by applying Eq.
(11%b) to Eq. (39) we obtain

Fu ={%)[X1] e [Xa)

Al

Xy LEN P
|
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APPENDIX B

We want to look at the analytic properties of 1,(z;)
in the upper half-plane. It is clear from its integrand
that I (z) — 0 as |zy] — o, Im (z,) > 0. In fact, it
goes to zero as z; ~ ~1 (this can be seen by integration
by parts). We want to show that I,(z,) is analytic in
the upper half-plane. To do this, consider the Taylor
expansion about Z, = #, + i, #; > 0:

o I "‘1
Ip(zl) = z I;(IT )

n=0

(z; — &),
where

Y ar
INZ) = o I ”(zl)lz1=§z .
1

We will show that this is a convergent series. [(Z}) is

I)(2)

—i n f+oo ffz1 Tp-1
- ((p - 1)) f—uo f—oo. ~ .J:—oo dxl o dxp

.
X exp (t (G = 50+ 4 (= %))
p—1

X [0eg = xg) + -0+ (x; — x )"

X xy(xl) X)'l::;(xpL
where

Y,,(6(x), 0)
X;(x) = a :_ x2)§(1+1) ’

Now

(3 1 J‘+ooj‘z1 f@p-—l
p(zl)l S (p _ 1),,, S o
X e~171[(a:1~zz)+'"+(a‘1—wg)]/(p——l)
X [(xp — %) + 0 4 (xp — x)]"
X g - - Ixizil(xp)l

It is clear that x}(x) dies off as x — oo. At some value
%, the function |y} (%)} will be a maximum. Hence

a -+
e < e 2 [ e oot

" mallp—1 ot s )
X eﬂwz/ P— )dx2 P evlmp/(zz—l dx,,.
— -0

Note that |yL(x,)] is still in the integrand. Performing
the remaining integrals, we get

G- o 1
(p — 1! ooy ot
+o

x f e dx,.

M2 < IIIx 1]
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This last integral is clearly convergent to some finite
number. After taking the indicated derivatives, we
finally arrive at

[13(2)] < 7(p)(n + p — 21 (@),
where
1 (p—=1"

= D=2

p—1 + o
x T | el .
j= —

It is clear that |/7(Z))] exists and is finite for 3, > 0.
Now we get for the Taylor expansion of |I,(z,)|

Dz, — A"
up(zl)lsf(p)z( tr - Pla - 4l

Uy

_ o)p ~2)! 5{’”

@ — |z, — 51\)”—1

This series is convergent for p > 2 and |z, — 7| < ;.
We can vary Z; in the upper half-plane and conclude
that the Taylor series for I,(z,) is convergent within a
circle centered about Z; and just touching the real
axis. This implies that 7,(z) is analytic? in the upper
half-plane.

APPENDIX C

We would like to develop some integral relations
known as Hilbert transforms or dispersion relations.
These relations are discussed in detail in several
sources.’® Consider the function f(z) to be analytic in
the upper half-plane with the property f(z) — 0 as
Im (z) — co. Also assume that f(z) has no poles in
the upper half-plane. This last assumption is not
necessary, but the case of interest in this paper has
this behavior.

Direct application of Cauchy’s integral theorem!?
for a point z interior the closed curve C in Fig. 2 gives

fz)dz

¢z —z

J(2)=

Now let the radius of the semicircle in Fig. 2 go to .
The contribution to the integral along the circular
arc'goes to zero. Hence,

2mif (z) = f:% , Imz>0. (CI)

Suppose z approaches the real axis from above. Let
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Imz'

ReZ'

FiG. 2. The curve C is indicated in the complex 2z’ plane.

z — z + ie, where z is now real and ¢ — 0. Note that?

. 1 1
lim — - =P—
20,2 — 2z — le 2 —z

+ ind(z' — 2), (C2)

where P denotes the principal value when the appro-
priate integral is taken. The principal value integral is
defined as

Pf+wﬂ—i) dz

-0 z

=lim (
€0,

Now we apply Eq. (C2) to the integral in Eq. (Cl1):

-0z

@y, +fw@dz).
€z

. te o f(z)dZ te f(z') dz’
l ————————————  —
"l'r;l ~wo (2 — z — i€) fw(z )+ ()
(C3)
Combining Egs. (C1) and (C3), we get
- +o0 ! ’
f@) == Pf &
o z'—z

Now we take the real and imaginary part of this
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equation to get the Hilbert transform relations

Re f(z) = - Pﬁr: Im(jzr(z-/-) j)z

1 J+°° Re f(z') dz’

mf(s) = ~~P) oy mz=0 (©9

These are the relations we set out to derive. The real
and imaginary parts of an analytic function are not
independent.
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Einstein Tensor and 3-Parameter Groups of Isometries with
2-Dimensional Orbits
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The algebraic classification of the Weyl and Ricci tensors and the relation between them in a Riemann
space with an isometry group possessing a nontrivial isotropy group are reviewed. All metrics with
Minkowski signature, invariant under a 3-parameter isometry group with 2-dimensional orbits having
nondegenerate metrics, are constructed from the group properties and are shown to have Ricci tensors
with a double eigenvalue, and the orbits are shown to be surfaces of constant curvature. The null orbits
are shown to have a triply degenerate eigenvalue of the Ricci tensor. The various additionally degenerate
metrics are classified in further detail, extending the work of Plebariski and Stachel.

1. INTRODUCTION

The algebraic classification (in the tangent space at
a point of 2 Riemannian manifold) of the geometrical
objects describing the gravitational field has become
a convenient tool both in the search for exact solutions
of Einstein’s equations and in attempts at their
physical interpretation.}~® The quantity best charac-
terizing the gravitational field, the Riemann tensor,
may be decomposed into objects belonging to various
irreducible representations of the homogeneous
Lorentz group: D(2,0) 4+ D(0, 2) (Weyl conformal
tensor), D(1, 1) (traceless Ricci tensor), and D(0, 0)
(curvature scalar). Most attention has been devoted to
the classification of the Weyl tensor, but, recently,
earlier investigations into the algebraic structure of the
Ricci (or Einstein) tensor have been resumed.

In general, one would expect neither a partial nor a
complete coincidence of the algebraic structures
(eigenelements) of the Weyl and Einstein tensors
corresponding to a metric. However, if the metric
allows a group of isometries, the situation changes.
The nature of the subgroup acting in the tangent space
at a point, the isotropy group, then plays a key role in
connecting the classifications of the Weyl and Ein-
stein tensor.!

After a review of the classification of the Weyl and
Einstein tensors in Sec. 2, we combine the considera-
tion of the local algebraic classification with that of the
global action of the group of isometries for a discussion
of the relation between the isometry group and eigen-
structures of the Weyl and Einstein tensors in Sec. 3.
In Sec. 4 we apply the classification scheme to all
metrics allowing a 3-parameter Lie group with 2-
dimensional orbits. Their Einstein tensors will be seen
always to have one double eigenvalue for the orbits
with nondegenerate metric and a triple eigenvalue for

the null orbits. The various further degenerate sub-
classes of the Einstein tensor with two distinct double
eigenvalues or with one quadruple eigenvalue are
classified in detail in Sec. 5. A concluding section dis-
cusses the outlook for further applications of this
classification method. In three appendices we describe
the method of constructing the nondegenerate metric

- on the orbits directly from the Killing vectors, give the

finite equations of the five different isometry groups
which occur, and list the Einstein tensors for the
canonical forms of various metrics appearing in the
text.

2. REVIEW OF ALGEBRAIC CLASSIFICATION
A. Classification of the Weyl Tensor

Among various methods of classifying the Weyl
conformal curvature tensor, one simple approach
treats this tensor as a mapping of the space of bi-
vectors onto itself. Because of the isomorphism be-
tween this Klein space and a 3-dimensional complex
vector space with Euclidean metric, the classification
task can be formulated as an eigenvalue problem for a
complex, traceless 3 x 3 matrix (matrix method).®
The decomposition into the various cases of distinct
eigenvectors and eigenvalues leads to the Penrose
diagram of Petrov types®® (Table I). To a triplet of
distinct eigenvectors in complex 3-space (nonde-
generate Weyl tensor), there corresponds a tetrad of
principal vectors in the tangent space of the Rieman-
nian manifold. For the nontrivial degenerate types the
eigenstructure of the Weyl tensor consists, in case D,
of two orthogonal 2-flats (spacelike and timelike,
respectively); and, for case N, of two orthogonal null
2-flats with a common null direction. Jordan, Ehlers,
and Kundt” have given a refinement of the Penrose
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TaBLE I. Penrose diagram.

——3 order of ntl_igilmianl eq(uation )
----» number of distinct (complex

linearly independent )eizenvectors} along arrow
...... > ber of plex) ¢ig

diagram by considering the degeneracies that may
occur separately in the real and imaginary parts of the
three complex eigenvalues, which correspond to four
distinct real eigenvalues in the nondegenerate case.

B. Classification of Einstein (or Ricci) Tensor

Here one has to deal with the eigenvalue problem
of simultaneously transforming two indefinite quad-
ratic forms into Jordan canonical form.2® A more
geometrical approach to the same problem was
followed by Churchill.® The results of such a classi-
fication may be put into a form analogous to the
Penrose diagram (Table II). The line I — D — DD
DDD characterizes an Einstein tensor with two orthog-
onal eigen-2-flats (spacelike and timelike, respec-
tively) without null eigenvectors. For the arrow II —
N — NNy, the timelike invariant plane contains a
double null eigenvector; for the arrow III — NNy
there exists an invariant null plane with a triple null

TasLE II. Classification of Einstein tensor.

1.>4
\
\
\
\
n..\. .............. D -»3
N \
A \
I s N DD --»2
\ \ \
N \ / \

N N AN
ompty <o v e NNI{I ............ NNH .. 'DDD’\'>|
s/ N '/\ a
4 3 2 2 3 | 4

——> order of minimal equation
--+-» number of eigenvectors

: along arrow
...... » number of eigenvalues
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TasLE III. Comparison of Plebanski types with types of Table
II. Explanation of Plebanski’s symbols (see Ref. 10 for more
details): The symbols T, N, and S are used if the eigenspace of
an eigenvalue contains a timelike eigenvector, no timelike but
a null eigenvector, or only spacelike eigenvectors, respectively.
Z, Z refer to the eigenspace of a pair of complex conjugate
eigenvalues. The subscripts refer to the power to which each
factor is raised in the minimal equation of the matrix of this

type.

This paper Refs. 10, 14
I [z - Z— 51— Sa][l—l-—l—l]
[T - Sy — 8 — Sa][l—l—l—l]
II 2N — 8§, — Sn][z-l—ll
III [3N — Slz-11
D [Z - Z - 2S][1_1_1]
21 -8, — 521[1-1—1]
[T — 28, — ss][l—l—l]
DD 27 — 2S)p1-1]
[3T — Sy-y3
(T — 381
DDD (4T
N [2N — 25][2—1]
(3N — Sla-1
N {4N]
N [4N]2)

eigenvector. In contrast to the Penrose diagram of
Table I, the more degenerated types may be reached
only along the broken arrows (---). Plebaiski® and
Petrov!! have given a more detailed refinement of this
classification, taking into account the various possi-
bilities for nonnull eigenvectors. This refinement
corresponds to the refinement of the Penrose diagram
mentioned at the end of Sec. 2A. Table III connects
this diagram with that given by Plebaniski.

3. ISOTROPY GROUPS AND ALGEBRAIC
CLASSIFICATION

A group of isometries leaves invariant the first
fundamental form and all tensors constructed from
this metric, such as the curvature tensor and its co-
variant derivatives, the Weyl conformal tensor, etc.
We assume the group of isometries to be an r-param-
eter Lie group G,. The orbit (or minimal invariant
variety) of a point x on the manifold is the set of all
points into which it is mapped by the group operations.
That subgroup of G, which maps point x into itself is
called the isotropy group (or subgroup of stability),
I, of x, where s is the number of parameters of the
isotropy group. We shall assume that all points in the
region under consideration are regular so that s is
the same for each point.1? The orbits are isomorphic
to the factor manifold G,/I, of G,, modulo the isotropy
group I,. Consequently, the dimension g of the orbit
is connected to r and s by'-12:13

g=r—us.

3.1
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The isotropy group I, of a point x induces a group
of mappings of the tangent space of x into itself,
which must thus form a subgroup of the proper homo-
geneous Lorentz group. As it leaves both the physical
components of the conformal and the Einstein tensor
invariant, the eigenelements of both tensors are like-
wise preserved.!® By virtue of the nature of the eigen-
elements described above (Sec. 2), the following
theorems hold.

Theorem I*713: A type I conformal tensor allows
at most a discrete isotropy group ;. D and N fields
have s < 2, the 2-parameter groups /, acting within
the eigen-2-flats. In the case of Petrov type O (vanish-
ing conformal tensor), the isotropy group may be the
full homogeneous (proper) Lorentz group.

Since the Einstein tensor has at least one invariant
plane,® one sees similarly the following.

Theorem 2: A nonvanishing Einstein tensor allows
at most a 2-parameter isotropy group. An Einstein
tensor of type I allows at most an /,, an Einstein
tensor of type II or D allows at most an /.

Together, Theorems 1 and 2 lead to compatibility
conditions between Weyl and Einstein tensor type.
Theorems along such lines have recently been proven
by Cahen, Debever, and Defrise* and Cahen and
Defrise!* for vacuum metrics.

Under the assumptions of constancy of the Petrov
type throughout some region of space-time and the
existence of a nondiscrete local isotropy group for
each point of a region, Cahen, Debever, and Defrise
give the following expressions for the admissible Ricci
tensors?.

Petrov type D:

Raﬂ = iRgaﬂ + akukﬂ + bmamp

+ 2clk g + tafpn); (3.2)

Petrov type N:

R.s = 1Rg,; + ak kg + 2blkmg + t,fp], (3.3)
where (k, m, t, f) form a null tetrad (or Sachsbein) in
the tangent space. By comparing Eqs. (3.2) and (3.3)
with the normal forms of the traceless tensor U,, =
R,; — }Rg,; given by Plebafiski,'® we conclude that,
under the above assumptions, only the following

H. GOENNER AND J. STACHEL

Churchill-Plebanski types may occur.

Petrov type D:
z-2- 28y —1mypy (T — 28 — Solyy oo
[2N — 28}, 1y, [4N]pays [4T)yy, 2T — 28], 1

(B4
Petrov type N:

[3N — Slg_yy 2N = 28]5_1;, [2T — 28], _y1,s
[4N]y;s 4Ny, [4TTp- (3.5)

Of course, this list of possible types may be further
restricted by additional symmetry assumptions. The
types actually occurring among the metrics we discuss
in the next section will be found by direct inspection.

4. METRICS ADMITTING A 3-PARAMETER
GROUP OF ISOMETRIES WITH
2-DIMENSIONAL ORBITS

Plebanski and Stachel’s recently discussed the
classification of all metrics with spherical symmetry,
i.e., with a 3-parameter group of isometries having
2-dimensional spacelike orbits. We shall generalize
this work by discussing the classification of metrics
with 3-parameter isometry groups having 2-dimen-
sional orbits, which may be spacelike, timelike, or
null since the metric is of Minkowski signature. The
isotropy group belonging to a G; with two-dimensional
orbits must be a 1-parameter group, by Eq. (3.1), and
it must induce a subgroup of the proper homogeneous
Lorentz group in the tangent space at each point of the
orbit. This means that the isotropy group must induce
a l-parameter group of pure rotations in the tangent
space of the spacelike orbits, special Lorentz trans-
formations in the tangent space of the timelike orbits,
and of null rotations (singular Lorentz transforma-
tions) in the tangent space of the null orbits.

The existence of such an isometry group imposes
restrictions on the algebraic structure of the conformal
and Einstein tensors. Applying the results of the pre-
vious section, we see that the Petrov type can be only
D, N, or 0. (We shall treat O, in the following work,
as a degeneracy of D or N.) The Churchill-Plebahski
type of the Einstein tensor is restricted to at most those
types given in Egs. (3.4) and (3.5).

" The nonnull orbits have a 2-dimensional metric
structure induced on them by the metric of the 4-space,
definite for the spacelike orbits and indefinite for the
timelike orbits. In either case, since the group of
isometries induced on the orbit is maximal, the spaces
must be of constant (positive, negative, or vanishing)
curvature. (For definite metrics, this result goes back
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TaBLE IV. G,’s with 2-dimensional orbits.

Space-time character
of orbit and sign of IX | vill VII VI 1I Isotropy group
curvature @=0 | @g=-1
+1 D ¢
spacelike -1 X rotation
0 D¢
+1 X
timelike ~1 X special Lorentz transformation
0 X
null X null rotation

to Bianchi!®; for indefinite metrics it is given by
Eisenhart.'?)

Bianchi'” has classified all real 3-parameter Lie
groups into nine types, for each of which a canonical
form for the commutation relations of its generators
may be given (see Appendix A for details). One may
now see which types are compatible with the character
of the orbit (spacelike, timelike, or null) and with its
curvature (positive, negative, or vanishing). The
results of such a study, which is discussed in Appendix
A, are given in Table IV.

Canonical forms of the metrics for the nonnull case
may be obtained in the following way: We first solve
the commutation relations of the Lie algebras to get
the three Killing vectors. The metric on the orbit is

with respect to the generators of the isometry group.
(For details, see Appendix B.)

We thus obtain the following canonical forms for
the metrics. Although somewhat different, the canoni-
cal forms given below (except for the null case) are
equivalent to the corresponding ones listed by Petrov
(Ref. 2, pp. 200-206). Other equivalent canonical
forms for the metrics of Petrov type D are also to be
found in Ref. 14.

1. Spacelike Orbit: x° = const, x* = const
We have
dsz — e2a(z°,w1)(dx0)2 _ eZﬂ(a:o,ml)(dxl)ﬂ
_ eZy(a:",xl)[(dx2)2 + 22(x2)(dx3)2], (41)

then constructed from the Casimir operator quadratic where I -
. P sin x positive
in the infinitesimal operators. We then add two o, ;
further generators commuting with the Killing vectors Z(x*) = {sinh x*) for { negative 2-curvature.
in order to build up the full 4-dimensional metric. 1 zero
The only additional requirement needed is that the 4.2)
Lie derivative of the 4-dimensional metric be zero The Killing vectors take the form
curvature & & &
of orbit 1 2 3
+1 sin x393 + cos x® cot x%05 o3 cos x303 — sin x® cot x243
-1 sin x303 + cos x® coth x263 03 cos x393 — sin x® coth x%03
0 0% 03 —x%05 + x203
4.3)

2. Timelike Orbit: x! = const, x® = const
There are two alternate forms in this case, resulting from different identifications of the timelike coordinate.

The first metric is static:

ds? = 2y(z1,z3)[22(x2)(dx0)2 _ (dx0)2] _ e2ﬁ(:c1,aa3)(dx1)2 _ eZa.(:cl,x3)(dx2)2’

(4.4)
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curvature & &= &=
of orbit 1 2 3
+1 sinh x5 — cosh x° cot x207 05 cosh x°65 — sinh x° cot x*83
| sinh x%3 — cosh x° coth x20% 05 cosh x%3 — sinh x° coth x%6%
(4.5)
The second metric is
ds2 — e2y(x1.xs)[(dx0)2 . ZZ(xO)(dxz)Z] _ e2p(ml.ms)(dxl)2 _ eza(zl.m')(dx3)2, (46)

with Killing vectors

curvature & & &
of orbit 1 2 3
+1 sinh x?65 — cosh x2 cot x%4; 03 cosh x%d§ — sinh x2 cot x°83
—1 sinh x205 — cosh x? coth x% 03 cosh x%65 — sinh x® coth x4;

In the case of zero curvature on the orbits, the Killing
vectors are, for both canonical forms (4.4) and (4.6)
(apart from signs),

£ = 2H—03 4 03, & =278 + 89,
1 2
£ = 278 x%(8 + 69 + x(—8 + 8]
3
= x%* — x%° (4.8)
. 1 2
With the coordinate transformation
yo = 2—,}(x0 _ xz)’ y1 —_ xl,
yE = z—g(xo + %), Y=,

we obtain from Egs. (4.4) and (4.6) the simpler
canonical form

ds® = ze2y(1l1,1ls) dyo dyz — ezﬁ(vl,ﬂ’)(dy1)2
— 2a(s’,4%) dv®)? 4.9
e (@y°)', (4.9)
with the Killing vectors

£ = 05, £%=OF, £%=x%%— x%Z. (4.10)
1 2 3

3. Null Orbit (see Defrise'®): x° = const, x! = const
We have
ds? = 2 dx0 dx® — (dx*) + o(x*)(xDX(dx%)?)
— M AxE, (4.11)
with Killing vectors

E% = 0[by(x%)x® + ¢ (x")] + 63 f bi(y) dy,

k=23 (4.12)

4.7

where b, has to satisfy the equation

e db
a(xo)f by(y)dy + — = 0.
dx

Only two of the three arbitrary functions «, 8, and y
of Egs. (4.1), (4.4), and (4.6) are essential. This stems
from the fact that every 2-dimensional Riemannian
space is conformally flat. One may thus put Eqgs. (4.1),
(4.4), and (4.6) into the forms

ds® = exp 2&(x°, x)[(dx®)® — (dx)?]
— exp 2p(x°, xV)f (x2, x®)[(dx2)? + (dx®)%]
and
ds® = exp 2y(x*, x*)g(x°, x*)[(dx")* — (dx*)*]
— exp 28(xt, X3)[(dx1)? + (dx¥)?). (4.14)

We shall, however, in our further work use the more
flexible canonical forms (4.1), (4.4), and (4.6).

5. TWO DOUBLE EIGENVALUES AND
QUADRUPLE EIGENVALUES

All the Einstein tensors belonging to metrics with a
G, with 2-dimensional nonnull orbits have at least one
double eigenvalue. The Einstein tensors of metrics
with a G; with 2-dimensional null orbits have a triple
eigenvalue. We shall now study the degenerate cases
in more detail.

In order to obtain the condition for the occurrence
of a second double eigenvalue for the nonnull orbits,
we have to calculate the Einstein tensor corresponding
to the canonical forms [Egs. (4.1), (4.4), and (4.6))].
This is most easily done by means of the exterior
differential calculus. The results are given in Appen-
dix C.

(4.13)
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A. Metrics With G; With Spacelike Orbits

For a metric with canonical form (4.1), a double
root exists if and only if ’

_Ia.e—-za _ ”Ile—zﬂ :F 2ﬂ’e_(¢+ﬂ)

d

d
-~ ea+ﬂ —
+ (8x°( )+ ox!

e2a) ﬂ e—-3¢~ﬂ

0 0
+ p'e" (—— ety 4+ — e“) =0, (51
p P (€*) ) (5.1
where y = log u(x?, x). A dot denotes differentiation
with respect to x°, and a prime denotes differentiation
with respect to x*.
Four cases arise here:

(1) the surfaces u = const are spacelike;
(2) the surfaces u = const are timelike;

(3) the surfaces 4 = const are null;

(4) p is constant throughout the region.

(1) If u is a spacelike variable, we may set 4 = x1,
in which case (5.1) reduces to
0 s 2

— e* = :F -_— e, 5.2

ox' ox° (52)
This is the same condition as the one given, for
spherically symmetric metrics, by Eq. (4.5) of Ref. 15.
We note, especially, that Eq. (5.2) is independent of
the curvature of the orbits. Thus, the introduction of a
null coordinate u by

0

2l’____.:lz_a_u_

e
E]
ox® oxt

leads again to the canonical form

v (5.3)

ds® = F(u, x") du?® + 2 du dx!* - (x1)?dw?, F> 0,
(5.4)
now, however, with
dw? = (dx?)? + Z2(x%)(dx?)?, (5.5)

with 2 given by Eq. (4.2).

(2) If p is a timelike variable, we may proceed
similarly or merely note that if F < 0 in metric (5.4),
x1is now a timelike variable; so we may use the same
canonical form with F < 0. If F were identically zero,
this would make x! a null variable, and we would get
case (3) below. If there is a surface x! = const on
which F makes a transition from positive to negative
values, then x* is a null coordinate on this surface.
This occurs in the case of the Schwarzschild and
Vaidya metrics, for example.

(3) If p is a null variable, we may always choose
® = f, since any 2-space is conformally flat, and
rewrite the condition for x to be null as (uq)? =
(#4)?, so that u = p(x® — x*) or p = u(x®+ x1).
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Introducing u = 2-¥(x® — x1), v = 27¥(x® + x), we
get ds? = 2e?* du dv — pu* dQ.

Takeno!® has shown, for orbits of positive
curvature, that this canonical form may be used in all
cases by allowing u to be a spacelike, timelike, or null
variable,-or a constant. However, we shall use the
canonical form (5.4) for purposes of comparison with
Ref. 15 in which the possibility of 4 = const not being
spacelike was not considered.

All the results of Sec. 4 of Ref. 15 can now be
generalized immediately for metrics with a group of
isometries Gy acting transitively on spacelike 2-dimen-
sional orbits of nonpositive curvature. For example,
the Einstein tensor has the form

Jioo 0 o

(xH?
Lo B
1,2 142
G = =) ) (56
o o Iz
2x!

o o o fn

2x}

and the curvature scalar and conformal invariant are
given by

R =Gi= (N () » (5.7)
C = BCoppyC*1t = BN L. (5.8)

The function fin (5.6), (5.7), and (5.8) is related to
F(u, x') of the canonical form (5.4) by

2
F=-xt 42 _ L
( dx2)2 xl

The further classification of the metrics (5.4) according
to whether or not the conformal invariant and the
Ricci scalar vanish may also be repeated; this leads,
however, to a threefold subdivision of metrics accord-
ing to the 2-curvature of the group orbits. One thus
obtains [with the abbreviation 1 = Z1d%X/(dx?)?]
Table V.

In the case of spacelike orbits with positive curva-
ture, many of these metrics have been named, e.g., the
Schwarzschild metric, de Sitter metric, Vaidya metric,
etc. (see Ref. 14 for the full listing). We may generalize
these names and speak of positive, negative, and zero
Schwarzschild, de Sitter, etc., solutions, depending
on the curvature of the orbits. Cahen, Debever, and
Defrise* have used the term ‘“‘Schwarzschildian” to
refer to this class of positive-, negative-, and zero-
curvature Schwarzschild metrics, as well as to the

(5.9)
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TaBLE V. Metrics with spacelike orbits. (R, C) means R # 0 and C # 0. A zero in either place corresponds to the vanishing of the
corresponding invariant.

Type F(u, x')
0,0 0, C) (R,0) (R, O)
2
[4Tky 1 - - TT =2 — BAGxY)? - %" — JAG)?
2m(u) 2m(u)
[4N]2 empty —A - =y —2 — FA()(xY)? —A - — IA(u)(xYy?
2 2 1
[2T — 28T 113 empty —A - ?':l (;)2 = + 2ax* + b(x1)? —A - %J:—)
2
2N — 28]-q empty —A— 2”;(:‘ )+ ;x(ll;g —A + 2a@u)xt + bu)(x)z -2 _/ﬁ‘;c_lx_l_)

corresponding ones for timelike orbits, which we shall
discuss in the next subsection. Birkhoff’s theorem for
empty space-times (and its generalization to some
nonempty solutions) holds also for the groups of
Bianchi type VIIIand VII with spacelike 2-dimensional
orbits, as Taub noted.?’ Cahen and Debever have also
discussed the generalization of Birkhoft’s theorem.*
A fuller discussion of Birkhoff’s theorem and its
generalizations has been given by one of us (H. G.)
elsewhere.?? The static degenerate vacuum solutions of
Table V have been discussed by Ehlers and Kundt!
and are tabulated in Table 2-3.1 of Ref. 1 as fields of
Class A.

B. Metrics with Timelike Orbits

The metrics with canonical forms (4.4) or (4.6)
have an additional double root if and only if a relation
like Eq. (5.1) holds. If y = const, there is an additional
double root, as may be seen from Eq. (C10). If y is not
a constant, it is always spacelike; in this case, we may
take y = log x® and so obtain

0 ., d
a—xse“’—:{:a—le (5.10)
We can again satisfy Eq. (5.10) by putting
du ou
wrb = L e o 2 5.11
¢ oxt’ ox° (5.11)
and so arrive at the canonical forms
ou\'[ {ou\® ou\2
d 2 = B d 3\2 B d 1\2
= (30) [(axa)( )+ (axl)( ) ]
+ M (Ax"PTHxH) — (dxH?]  (5.12)
and
dst = — (93) (. + () (dx)?]
+ (*(dx")® — Z2(x")(dx®)M. (5.13)

However, u is no longer a null coordinate, and these
forms do not appear to constitute a simplification.

In the special case where § = B(x®) and « = a(x®),
one derives from Eq. (5.9) that

0
87‘(“ + 8 =0.
Putting e?* = f and e? = g, we find that Eq. (5.14)

leads to
glg = —fIf or g=f"1+4const (5.15)

with g = g(x®) and f = f(x®). The components of the
Einstein tensor (referred to the tetrad of differential
forms of Appendix C) are in this case

(5.14)

Go = Gz = 2(3;)2 ox (( o )
Gl=6 =~ 3)2(:1:/1 + == (x g)) (5.16)
G =0,

with +4 and —A corresponding to canonical forms

(4.4) and (4.6), respectively.

The conformal invariant is

C=Gy—Gi— %%

Again, we may discuss the case R=0 and C# 0
which leads to

(5.17)

¥A+ +—
(3)2

and
ds®* = — (:F,l + 5+

_ (dxa)2
FAi+ a/x® + b/(x*)?

+ {(x3)2[(dx°)222(x2) - (dxz)zl-
()[(dx®)* — ZX(x")(dx*)?]

o) @

(5.18)
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For b = 0, the vacuum field equations are satisfied
[C = a/(x®)*). Further discussions of some of these
metrics may be found in Refs. 14, 18, and 19. For
R#0,C=0,

g = Fi+ bx®+ a(x®)?
so that

ds® = —[F1 + bx® + a(x®?|(dx")*
_ (dx®)
FA+ bx® + a(x®?
N (x3)2{[(dx°>222<x2) — (d)
[(dx)? — B3 ) (x>

For R = 0 and C = 0, one obtains f = —1~1, 1 £ 0,
and

st = 2 [(@x)" + (@x]

[(@dx)PE) — (dx)?]
[(dx")? — Z3(x°)(dx*)’]
The metrics of Eqs. (5.18)-(5.20) are analogs of some
of the metrics compiled in Table V. The static de-
generate vacuum fields of this type have been given in
Ref. 1, Table 2-3.1. However, Eq. (5.10) allows more
general classes of solutions than does (5.2). For
example, the most general metric with « = «(x!) and

p = B(x%, x1) and two double eigenvalues of the
Einstein tensor is given by

ds® = —[kx' 4 I}}(dx%)*

— [b(x") + 2kx*]*(dx")?

+ ([(dx")® — ZH(x")(dx??), (5.21)
where b(x") is an arbitrary function and & and / arbi-

trary constants. The metric (5.21) cannot satisfy the
vacuum field equations.

(5.19)

+ (x3)2[ (5.20)

C. Metric with Null Orbits

For a metric with a null group orbit, one has a
triple eigenvalue in the most general case. We shall
discuss the condition for a quadruple eigenvalue.

As one can see from Appendix C, the condition for
the canonical form (4.11) to have a quadruple eigen-
value is

o' —ad'f =0 (5.22)

Two cases must be distinguished:
1 =0, -a=akx’), B=P7Hx"xY;
2
a' # 0, »% — B =0; or B=loga — f(x%).

The canonical forms for a metric allowing a group of
isometries with 2-dimensional null orbits and whose
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Einstein tensor has a quadruple eigenvalue thus are,
respectively,

ds? = eZa(x°)[2 dx® dx? — (dx3)2 + o,(x0)(x2)2(dx0)2]
— M dxy (5.23)
and

d52 — e2a(a:°.ml)[2 dx® dx? — (dx3)2 + 0,(xO)(‘)(:2)2(‘1)60)2]
— ()% P dx. (5.24)

Only the metric (5.23) can satisfy the vacuum field
equations, which it does if « and § satisfy

-2+ 2408 —a2—a=0.

The Einstein tensor of metric (5.23) has three eigen-
vectors (one null and two spacelike belonging to the
eigenvalue 4 = 0); whereas the Einstein tensor be-
longing to (5.24) possesses only two eigenvectors (one
null, one spacelike). Tables II and III show that the
corresponding Churchill-Plebanski types are [4N];;
and [4N];. The first one may thus represent a null
electromagnetic field.

6. CONCLUSIONS

In the preceding sections, we have seen that the
combination of algebraic classification of the Weyl
and Einstein tensors and of group-theoretic methods
is a convenient tool in finding specific canonical forms
for metrics with sufficient symmetry. The canonical
forms belonging to metrics allowing a group of isom-
etries may be found in the literature? or may be
derived directly by coordinate-free differential geometric
techniques. They may be further restricted by condi-
tions inferred from a given matter distribution and
imposed on the eigenstructure of the Einstein tensor.

While we have listed the general canonical forms
for metrics with a G, and 2-dimensional orbits, only
the more degenerate Einstein tensors have been
classified in detail. Many of the metrics obtained are
still to be investigated for possible physical signifi-
cance. Some of these metrics, which may be inter-
preted as generated by pressure-free matter have been
discussed by Ellis,?® with references to earlier work.
One may assume the orbits to constitute symmetry
surfaces of the matter. However, it is not obvious
what kind of matter distribution, if any, would
generate, for example, a surface of constant negative
curvature. The case of flat orbits seems to be a little
easier, if one restricts himself to special global topol-
ogies (e.g., cylindrical orbits, etc.). We have not
touched upon questions of global topology in this
paper. The global topology of 2-dimensional surfaces
of constant curvature has been completely classified,
for definite or indefinite signature of the metric and
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for positive, negative, and vanishing curvature. The
results have been conveniently cataloged by Wolf,*
who is responsible for the study of the timelike orbits.
This should help in the study of the 4-dimensional
global topology of the metrics with spacelike or
timelike orbits.

As the theorems connecting the algebraic classi-
fication of conformal and Einstein tensors discussed
in Sec. 3 are more general than the applications in this
paper, it would be interesting to investigate Einstein
tensors with more or less symmetry. For example, one
might want to study metrics allowing a G, with 2-
dimensional orbits (nondegenerate conformal tensor,
rotational symmetry) or a G, with 3-dimensional
orbits, this case containing among others the Taub-
NUT space.14-20-25 Cahen and Defrise! have begun a
general study of metrics having a nontrivial isotropy
group.

Furthermore, the method for construction of the
metric on the orbits used in Appendix B might be
exploited in the search for exact solutions of Einstein’s
equations. This method is rarely used in the relativity
literature. The only reference to it we have found is in
the work of Misner.?
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APPENDIX A: 3-PARAMETER ISOMETRY
GROUPS WITH 2-DIMENSIONAL ORBITS

As we have discussed in Sec. 4, if the orbits of a 3-
parameter isometry group are nonnull 2-dimensional
surfaces, they must be surfaces of constant curvature,
positive, negative, or vanishing. The isotropy group
at each point of the orbit must be a 1-parameter group
of real rotations in the case of a spacelike orbit (i.e.,
one containing only spacelike directions), a 1-param-
eter group of special Lorentz transformations in the
case of a timelike orbit (i.c., one containing timelike
as well as spacelike and null directions), and a 1-
parameter group of null rotations or singular Lorentz
transformations, in the case of a null orbit (i.e., one
everywhere tangent to the null cone, containing one
null and spacelike directions only).

Bianchi has shown!’ that there are nine noniso-
morphic 3-dimensional Lie algebras over the field of

H. GOENNER AND J. STACHEL

TaBLE V1. Bianchi’s classification of Gy’s.

I [XX1=0 ,j=1,2,3
11 [XiX:]1=0 [XzXa] =X;, [X:X11=0
It [X1X;] =0 [Xsz] =0, [X:X]l=-X;
v [X1X,] =0 [XzXa] =X+ X, XGX]= —-X;
A [XiX.] =0 GX] = X, [XeXi] = -X
VI [XX:] =0 [XzXa] = qXZ[X8X1]=_Xl’ (q #0,1)
VII XXl =0 [X2Xy] = —X, + X,
(X3 Xy] = —X,, g* <4
VIII [X1X,] = X, X X5l = X,, [XXy] = —-2X,
IX [Xle] =X, [XaXs] =X, [XaXI] =X,

the real numbers. We follow Petrov? in the numeration
of these groups in Table VI, where they are listed with
a canonical form for the commutation relations of
their generators.

Over the field of complex numbers, types VI and VII
are isomorphic, as are types VIII and IX (the only
two nonsolvable groups), which are then isomorphic
to SL(2, C).

Now we shall discuss which of the above groups can
be asscciated with 2-dimensional orbits of the various
possible types. Our discussion will sometimes lean on
and amplify that of Petrov? and sometimes differ from
it somewhat. First of all, let us consider the nonnull
orbits. If and only if the curvature of these orbits
vanishes, the isometry group must induce a 2-param-
eter Abelian subgroup on the orbit (see Eisenhart,!?
for example). For the case of a spacelike orbit of
vanishing curvature, the two commuting generators
must have commutation relations with the third gener-
ator, which generates the 1-parameter family of rota-
tions of the isotropy group, like those of the
translations and rotations of a Euclidean plane. This
leads us to Bianchi type VII, with ¢ = 0. Since VI and
VII are isomorphic over the complex field and since a
pure Lorentz transformation may be represented as a
rotation through a complex angle, one can immedi-
ately guess that in the case of a timelike flat orbit we
shall have Bianchi type VI. One may then check that
the generators will have the commutation relations ap-
propriate to a timelike 2-flat in Minkowski space, if
we take ¢ = —1 for Bianchi type VI.

If the orbits are nonflat, then the symmetry group
cannot have an Abelian subgroup, so that we are led
at once to the nonsolvable groups VIII and IX. For a
spacelike orbit of positive curvature, the generators
must have the commutation relations of the rotations
on an ordinary 2-dimensional sphere and so must be
of Bianchi type IX. Since the commutation relations
of the other three cases must be different (i.e., space-
like orbit of negative curvature and timelike orbit of
positive or negative curvature), they must be of
Bianchi type VIII. As we shall see below, when we
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discuss the finite equations for the groups, these com-
mutation relations do admit the appropriate isotropy
group in each case.

In order to discuss the Bianchi type associated with
the null orbits, we consider an example of such an
orbit. If we cut a null cone with a timelike hyper-
surface, the intersection forms such a 2-dimensional
null orbit, which is generated locally by two trans-
lations, one in a spacelike and one in a null direction.
The null direction is also the axis of the 1-parameter
group of null rotations which constitutes the isotropy
group at a point of the surface. The spacelike and null
translations commute, as do the null translations and
null rotations. Thus, only Bianchi types II and III
need be considered. We have been unable to find an
intuitive argument leading uniquely to type II, but
the calculations of Defrise!® show that only type II
occurs.

Since the metric induced on the null orbit by the
4-dimensional metric of the space-time is degenerate,
it cannot be constructed directly from the Killing
vectors as we shall do in Appendix B for the other
cases. The work of Defrise, discussed in Ref. 18,
shows that the unique canonical form of the metric
in this case is given by Eq. (4.11).

The simple and somewhat intuitive arguments given
above can be formalized (except for the null case)
using an extension of Cartan’s method for the case of
definite metrics,28 based on the fact that the connection
form on the orbits [see Eq. (C3)]is a 1-form in the Lie
algebra of the isometry group. The results of this dis-
cussion of Bianchi types are summarized in Table IV.

We now give the finite equations for the groups
which occur. As mentioned, the groups of Bianchi
type IX and VIII are isomorphic to SL(2, C) over the
complex numbers. The finite equation of the group is
therefore

a b
c d

, az+b
z = ——

, Al
cz+d (AL)

\:L

Since SL(2, C) is isomorphic to the proper homoge-
neous Lorentz group, it contains as subgroups the
group of rotations around an axis

, wcos @ + sin @ 1
w = w=xy ,

—wsin ¢ 4 cos ¢

which is the isotropy group for the spacelike orbits,
as well as the group of special Lorentz transformations

, wecoshy -4 sinh yp 1
w = w

_wsinhw+coshy)’

which is the isotropy group for timelike orbits.

3367

For the group of Bianchi type VII, the finite
equation is derived from Eq. (4.3):

(x?) = x%cos ¢ — x*sin ¢ + a,
(x®) = x2sin ¢ + x®cos ¢ + b, (A2)
(O =8, () =,

with group parameters a, b, and ¢. The isotropy group
(leaving the point x* = x3 = 0 invariant) is again
O(l, R).

For Bianchi type VI we start with the canonical
form (4.9), in which y® and y? are null coordinates.
The finite equations of the group deriving from (4.10)
are

(y())/ — ayo + b’ (y2)l =g y2 + d’
a, b, d group parameters,
O =y O =y
Equation (A3) contains as a subgroup (isotropy
group) the group of special Lorentz transformations
(b=d=0):
(y())' = oy, (yz)' = aly,

This can be seen by rewriting the special Lorentz
transformation
x = yp(x —vt),

(A3)

ct’ = y(ct — v/ex),

with y = (1 — v?/c®)~%, in null coordinates u =
x—ctandw=x + ct:

' =au, W =alw,
e (I_L/)’*’
1 —vfec
Finally, for Bianchi type II, the finite equations of
the group, from Eq. (4.12), are
(x%) = ",
(1)’ = x,
) =x2+ ex® + a,
(x®) = x4 b, a,b, e group parameters.

(Ad)

Again, x® and x? are null coordinates. The subgroup
of isotropy (a = b = 0, leaving the origin fixed) now
consists of the singular Lorentz transformations (null
rotations)2?

() =,

(x?) = x? + ex®,

(1) = x,

(%) = x%, (AS)

where we keep invariant either the null ray x! =0,
x2 =0, x3 = 0 or the null ray x* = x! = x® = 0, but
not both.
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APPENDIX B: CONSTRUCTION OF THE
METRIC ON THE NONNULL ORBITS
FROM THE KILLING VECTORS

In order to obtain the canonical form of a metric
allowing a group of isometries, we start by construct-
ing the metric on the orbits from the Killing vectors.

Instead of solving Killing’s equations, as Petrov?
does, for example, we may solve the commutation
relations of the corresponding Lie algebra
0

[Xaﬁ Xb] = C:ch’ Xa =¢

a ox*

Then we calculate the quadratic invariants / of the
Lie algebra. In the case of nonsolvable groups, this is
done by help of the group metric g,;, and of the first
Casimir operator [ = g®X_X,; in the case of solvable
groups, by direct inspection. These quadratic in-
variants, written as tensor products, provide the con-
travariant metric on the orbit (for the notation
used, see Ref. 25):

a ¥ ab
)1 =8 Xa ® Xb
Os

or, in the case of solvable groups,

DX, ® X,.

() -
as a,h
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By construction, then, the Lie derivatives of the corre-
sponding covariant metric with respect to Killing
vectors vanish. We have summarized the relevant
information in Table VII.

The structure constants in column 2, rows 2, 3, 4,
and 6 do not correspond to the ones usually given [in
Eq. (Al), for example]. By basis transformations of
the Lie algebra one can convince himself, however,
that the exhibited Bianchi types are correct. For
Bianchi types VII and VI, quadratic operators com-
muting with all elements of the Lie algebra exist only
if g takes the values ¢ = 0 and g = —1, respectively.

In order to proceed from the metric on the orbits
to the metric of the full Riemannian manifold, we find
two vectors (operators) commuting with the Killing
vectors. For Eqs. (4.3) these are 0/0x° and 9/0x!;
for Eqgs. (4.5), (4.7), and (4.10), 9/0x* and 0/0x3.
Since the cross terms

0 7] J 0
0 ax1+ax1®8x°
and
a d d J
o e ®ot

respectively, can always be removed by a coordinate
transformation and since the Lie derivative of the 4-
dimensional metric with respect to the Killing vectors

TasLE VII. Metric on the group orbits.

Bianchi type Lie algebra

Casimir operator or Metric on the

of group [X.X5] = C4X, Group metric quadratic invariant group orbit
IX Ch=Cxn -1 O -+ X+ X3 —[(dx?? + sin? x3(dx?]
=C} = ~1 2( -1 )
0 —-1
VIII Ch=Ch=1 1 O XP+ X — X§ —[(dx®)2 — sin? x*(dx?)?}
Ci = —1 2( 1 )
O -1
viI Ch=Ch =—1 0] =X+ X7+ X3 (dx")® — sinh? x°(dx?)?
Cl = +1 2( 1 )
O 1
VIII e = Chs = —1 1 X2 — X2+ Xo (dx?)? + sinh? x*(dx®)?
Cih = +1 2< )
O
i f=—Cih =1 — X+ X3 (dx®)* + (dx®)?
(g=0
VI clL — C? — HXX: + X6X) = XiX, @x?)* — (dx*)?
G=-1n = “'72
C23 = Cza = 72
I Ch=1 — Xt singular




EINSTEIN TENSORS AND 3-PARAMETER GROUPS OF ISOMETRIES

must vanish, we arrive at the canonical forms given
in the text.

APPENDIX C: EINSTEIN TENSOR FOR
CANONICAL FORMS “.1), (4.4), (4.6),
AND (4.11)

In the usual applications of the exterior differential
calculus, one introduces a tetrad of differential 1-forms
»® by help of which the metric may be written as
8ap = Nupw*w? (where 7,4 is the Minkowski metric).
The components of the Riemann curvature tensor
referred to this tetrad may be read off from the
curvature form

Guﬂ = %Raﬂyéwv A wé’ (Cl)
where
05 = doj + o} A wj, (C2)
with the connection form w? defined by
do* = o A 0°. (C3)

It turns out to be convenient to use a nondiagonal
tetrad of differential forms for the canonical form
(4.11). The formalism given by Eqs. (C1)-(C3) will
always work properly if one does not overlook that
nonvanishing »7’s (no summation over ¢!) exist in
place of some vanishing w}’s (« 5 f).

1. Metric with Spacelike Orbits

We have
ds® = nz0°0f
with
0’ =e*dx®, o' =efdx!, w®= e dx’
w® = e dx®. (C4)
The calculation leads to
Gy —Gp 0 0
G{f — ""Gox —‘Gu 0 ’ (CS)
0 0 -Gy O
0 0 0 — Gy,
where
Gy = (7* + 2Bp)e™ + (=2y" + 28’y — 3y*)e ™
— I35 e,
G = (2§ — 267 + 3pHe™ — (" + 2a'y")e ™
—X7IZ g6,
G} = G3 (C6)

=B -ap+ B+ —ap+py+y)e™
+ (=o' 4+ /B — a?
—ay =y By — e,
Go= —Gi=2(7" — o'y + py' — fye*?,
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where a dot denotes differentiation with respect to x°
and a prime denotes differentiation with respect to x™.

For the special choice of coordinates y = log x*, one
obtains

A = G — G)* — GyGY

2 2
= ( 11)2 e—2(a+3ﬁ)[(éa_l ea+B) — (;_0 625)]. (C7)
X X X

The roots of the secular equation for (C5) are

A= Gl Ay = XGY + GY) + AY;

thus, there is always one double root. There is an
additional double root when A = 0.

2. Metric with Timelike Orbits
1. Canonical Form (4.4)
We have
ds® = n,,0°0f
with
o’ =T dx’, o' = ef dx!,
o =e"dx?, o= e*dx’. (C8)

The components of the Einstein tensor, in this tetrad,
are given by
Go O 0 0

0 -G 0 -G
Gf = 11 13 , (C9)
0 0 Gy O
0 - GIS 0 - G33
with
Go = G;

= (=7 =B+ pu— 7" = B+ af — fhe™
+ (=Y VB — e~y
+ a'f =« — a")e
Gl = (=2¥ + 296 — 3p%)e™™
+ (=2p'a’ — y'He ™ — T7IL e
Gy = (=298 — 7")e™
+ (=20 + 28 — 3y e — T e ™,
G =20/ ~ y'B + v — D),
where a dot denotes differentiation with respect to x3

and a prime denotes differentiation with respect to x.
The eigenvalues of the Einstein tensor are given by

hia=GY 13,=HG}+ Gd £ A}
A = KG} — GI* — GiGh.

The specialization y = log x® leads to

1 _ . 0 .5\ 0 .Y
a= (5e) - (aer)] @

(C10)

b
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and reduces Eq. (C10) to
== (5l - f s p)

X
+ e—2p(dlﬂl _ al2 - D(.”),

1wy % 1Y 1 o

Gi=e (2 X3 (x“)Z) (x‘*fz Ea (c12)
_ g 1 1w

e

G; _ G:; — __25_5e—(a+ﬁ)

With Eq. (5.14), this set of expressions goes over into
Eq. (5.19).
2. Canonical Form (4.6)
Here one works with
ds® = 0%,
0’ = e’ dx:, o'=efdx!,
w? =X dx’, ®= e dx®
[exchange of w® and w? in (C8)].
The detailed calculation shows that the only change
in Egs. (C9)-(C12) is a change of sign of the terms
proportional to 271X ,,.

(C13)

3. Metric with Null Orbit
For this case, we work with the tetrad of external
differential forms
o = e*dx’, ' = éf dx*,
o? = e dx?, «® = e [dx® + o(x")(x%)? dx’] (Cl14)

leading to ds? = y,z0%w#,

o 0 0 1
0 -1 0 0
V=10 o0 -1 o
1 0 0 o

The nonvanishing coefficients wg are
0 0 1 0 2 1
wd, 0}, o}, 0, o, and wj.

We have the further relations w? = o}, wf = w2,
2 1 1 — 0 2 = 0 0 — 13 — ]l —
W= —w), 0l=o0, ol=o0], of=0]=o0=

w2=0, and o} = —w]. The detailed calculation
leads to
GO3 _Gol 0 GOO
-G 0 G
G = 11 o1 ’ (C15)
Goa

@) G,

H. GOENNER AND J. STACHEL

with

= —(f—2af + f2 + & — &* — o)™,
Gy = =3Q«" — 2a'f' + 3a'%)e™,

= —(4«" — 4a'f’ + 9a"*)e™*,

Gos = —Gye, Gy = —2( — oc’ﬁ)e“(“"‘ﬁ),

(C16)

where a dot denotes differentiation with respect to
x® and a prime denotes differentiation with respect to
x. For a quadruple root we obtain the condition
—Gy, = Gy3, which leads to Eq. (5.21).
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An approach to the problem of representation of the algebra of currents that puts essential emphasis
on the study of infinite-parameter Lie algebras is proposed. As an example, a class of irreducible
Hermitian representations of the commutation relations [Vi(¢,), Vi($:)] = i V¥(¢1¢,), where the ¢’s
are elements of a commutative algebra with identity, is derived. The dependence of the representations
on the algebra {¢} is completely characterized by two functional equations that are explicitly solved, for
{¢} an algebra of polynomials. States of well-defined momentum and rotational properties are constructed
using translational and rotational invariance and forming direct integral spaces. The representations so
constructed are seen to belong to two distinct subclasses, distinguished by the vanishing or nonvanishing
of a length parameter |n|. The subclass with [9| = 0 is unbounded in isospin and has the trivial momen-
tum-transfer structure characteristic of field-theoretical point particles. On the other hand, the spaces
characterized by |n| # 0 are bounded in isospin and suited to describe particles with structure. A brief
discussion on how to derive invariant form factors from the results here presented is included.

1. PHYSICAL MOTIVATION

Following Gell-Mann’s suggestion,! the possibility
that a theory of hadrons should involve the currents
as basic coordinates has been discussed in many
recent publications.? Two types of nontrivial examples
have been investigated:

(a) the program of Dashen and Gell-Mann?® using
the representations of the chiral charges and other
current densities (provided that they commute with
@, in a system of Dirac matrices, when using quark-
field bilinears) between states with infinite momentum

s > 5

(b) the Sugawara® model, which provides a con-
sistent description of the generators of the Poincaré
group as integrals over quadratic functions of the
curreats.

In both programs, one is interested in the representa-
tions of the local charge and current densities, which
are supposed to explain the actually observed spec-
trum of the hadrons. In the previous viewlS it was
hoped that the spectrum of masses, spins, and unitary
spins would reflect an approximate symmetry under
a generalized system of global algebraic generators,
the space integrals of time and space components of
current densities. The energies would thus be related
to some Casimir operators of this global Lie algebra;
the order of operations was thus first a space integra-
tion of the densities, next a squaring of the integrals
(e.g., for the quadratic Casimir operator), and then a
summation over chiral, unitary, or SU(6)-spin
indices.

In the alternative (local) approach, the procedure
is inverted. Sugawara’s energy spectrum will be fixed
by the space integral of 0%, the energy-momentum
density, given as a quadratic function of the charge
densities. First we square the densities, next we sum
over chiral-unitary indices, and then we integrate
over all space. The structure of the spectrum is
already realized at the level of the infinite-parameter
algebra of the densities. As a consequence, both the
Dashen—Gell-Mann program and the Sugawara
model lead us to shift our concern from the represen-
tations of integrated commutators (charge algebras)
to the representations of the infinite-parameter Lie
algebras associated with the algebra of currents.

In the approach of Dashen and Gell-Mann a
solution is attempted in the following way: One
takes matrix elements of the currents between phys-
ical states at infinite momentum; then one is left with
the problem of satisfying the commutation relations
and the kinematical constraints imposed by the
transformation properties of states and currents.
These kinematical constraints have been the main
difficulty standing in the way of a solution to this
problem.

In this paper an alternative approach is proposed:
One writes the currents as functionals over an algebra
of functions in 3-space; the unintegrated commuta-
tors written in functional form are then treated as an
infinite-parameter Lie algebra and its representations
constructed without any reference at this stage to the
physical interpretation of the state vectors in the
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representation spaces. The physical interpretation
and construction of physical spaces would then be
effected by the use of the relativistic transformation
properties of the currents or in the case of the Suga-
wara model by operating with the energy-momentum
tensor on the states. That this is a natural approach
to solve the Sugawara model has already been pointed
out by Sakita.® Here we suggest that it may also be a
convenient approach even when no energy—-momentum
tensor is available, for, without having to worry
about ab initio kinematical constraints, one has more
freedom to explore the structural richness of the
infinite-parameter Lie algebras. To show the feasibility
of this approach, we study a simple example involving
the equal-time commutation relations of the isospin
charge densities:

[Vo(x), Vi)l = i€ Vf ()8 (x — y), xp=yo. (1)

Defining the currents as operator-valued functionals
over an appropriate algebra of functions {¢}, one has

Vi$) = f Viogm &, @)

[Vi(¢l)$ Vj(¢2)] = ifiika(‘h?Sz)- (3)

To be able to use equal-time commutation relations,
we here assume that a simple smearing over space
.at fixed time of the charge density operators is enough
to ensure good behavior of V(¢). This is not so in
some models; however, for the essentially model-free
calculations done in this paper, no trouble is seen to
arise from the above assumption. The commutation
relations (3) define what will be called ‘“local SU2.”

The algebra {¢} is required to contain the identity.
Thus the algebra defined by (3) contains the Lie
algebra of SU2 as a finite parameter subalgebra.

In Sec. 2, conditions on the reduced matrix ele-
ments for a general Hermitian representation are
derived. In Sec. 3, we restrict ourselves to represen-
tations where no two SU2 subspaces are equivalent
(here called singleton representations), and {¢} is any
commutative algebra with identity. The dependence
of the matrix elements on the SU2 quantum numbers
is completely factored out and the functional depend-
ence is found to be characterized by two functional
equations.

In Sec. 4 a general solution of the functional equa-
tions is found, for {¢} an algebra of polynomials.
Finally, in Sec. 5 we use translational and rotational
invariance to construct states with well-defined mo-
mentum and rotational properties.
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2. GENERAL STRUCTURE

We define
VE = Vi(¢) + V(). @
From (3) it follows that
[(V=2(), (V=P(#a)] = 0, ©)

V), V()] = 2V3(140), (6)
[V (#0), Vi)l = —VH(re), M
V=40, V@)l = V- ($16s). ®)

The representation spaces of {Vi(¢)} to be derived
are assumed to be reduced in irreducible subspaces
of the subalgebra {Vi(1)} ~ SU2.

The vectors in these subspaces are characterized by
|pIl;), where I(I 4+ 1) and I; are the eigenvalues of
Vi(1)pi(1) and V3(1) and p is a multiplicity quantum
number:

VEQ) |pllsy = [(I £ Iy + DU F ) [pll £ 1), (9)
V3(1) |plly) = I |pll). (10)

From (3) one sees that V?(¢) transforms like a SU2-
vector operator. Using the Wigner-Eckart theorem
with the appropriate Clebsch-Gordan coefficients,
we see that the most general form of the representa-
tions of {Vi(¢)} is

VH($) lpILy)
=S {&ld FI)I F I, - OF

x AL () [p'T — 1, £ 1)
— [ F L) £ I, + DI*BLP($) |p'TI, + 1)
[+ I+ 0T+ +2)F
x CLE($) lp'T + Uy % 1)},

V($) Ipll)
= S {II — I + )AL () |p'T — 1Iy)

- IaBIpp’(d’) [p'II3)
— [ + I + DU — I + DIXCLP () |p'T + 11,)).
(12)

(11

" A scalar product is defined as

(plls | PI'T3) = 8, 811811,
and for Hermitian representations we require

(pT'Is + 1| V(@) |pIIs) = (pIIs| V(¢) Ip'T'I; + 1)¥,
(14)

(p'I'L| VA($) lpllgy = {plIs| V() |pT'T)*. (15)

(13)
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(14) and (15) applied to (11) and (12) imply
BY(¢) = [BY(PT, (16)

Al($) = —[CT (I, 17
where 4X($), BI(¢), and C¥(¢) are matrices on the
multiplicity index p.

To determine the reduced matrix elements AI‘,”,'
BL# and CL?, we substitute (11) and (12) in
(5)-(8), and after some algebra one finds the following
equations for the matrices B and C:

CI(¢1)CI+1(¢’2) = CI(‘/’z)CHl(S[’l),
CY(¢)B™(¢s) + BHb)CH(¢2)
= CY(¢)B™(¢) + BU($2)C'($1), (19)

(18)

1 1 + — Iz I I
CH($)IC($)]" — hc. = dri [B(¢2), B (0],
(20)
[CTH (I CT () — e,
_+y

Z, 7
20+ 1 [B(¢2), B (4], (21)

—CH($B™($)I + 2) + BH()C($0U + 1)

— BY($)CY(¢o) = Cl($1d), (22)
[CTH$FCIH QI + 1) — 2CTH($)ICT Y o)
~ CH@ICH T2 + 3)

+ [BY($p), BT + 2) + B (¢2)B ()
—BI(¢1¢2)- (23)

(17) was used to eliminate the equations involving

AX ().

3. SINGLETON REPRESENTATIONS

In this section we find the Hermitian irreducible
representations of the commutation relations (3)
subject to the condition that any SU2 subspace of a
given kind appears at most once (singleton representa-
tions). The algebra {¢} is any commutative algebra
with identity.

The result is the following:

Theorem: The Hermitian irreducible singleton
representations of “local SU2” are characterized by
the reduced matrix elements

AI+1(¢))
= CX(¢)
ARG V(S S Vs A
= "[((I v P ) ((21 + 3 + 1))] @)
24
. Yl _
B = 1y 69 — 2@, (25)
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where
(i) a particular choice of phases was made to

guarantee 4771($) = CX(¢),

(ii) 1, is the smallest I in the representation space,

(iii) €; is an arbitrary sign, one for each /,

(iv) vy is an arbitrary real number,

(v) C(¢) and Q(¢$) are real linear functionals
obeying the equations and boundary conditions

C(¢0)Q($2) + C($)Q(¢y) = Clhio), (26)
O(h1ds) — Q($0)0(s) = uC(d)C(s), (27)
cChy=0, o) =1, (28)

(vi) p is a real number, not completely arbitrary,
which is required to belong to the range of Q(¢%) —
Q(¢)? with the restriction C(¢) # 0,

(vii) ¥ (I + 1)* — u > 0 for all I's.

Proof: In the case of singleton representations each
I appears only once, BI(¢) and C’(¢) are just numbers,
and the commutators of the B’s in (20), (21), and (23)
vanish.

(a) Suppose that the representation space contains
only one I. Then all C’s vanish, and of Eqs. (18)-(23)
only (23) survives with the form

—BI(¢2)BI(¢1) = BI(¢1¢2)-

This is a particular case of the general result stated
above.

(b) Suppose now that the representation space
contains more than one I. Call I, the smallest I in
the space and 7, the largest one when it exists. Then,
for at least one ¢, , one has C¥(¢,) # 0, for otherwise
the J, subspace would be invariant, thus contradicting
the irreducibility hypothesis.

From (18) one writes

Cl¥() = CR($)CT™($)/CT($)

and, if I, + 1 is not the highest I in the space, then
CIt1(g,) # 0; for, otherwise, C1o*1(¢) = O for every
&, and the irreducibility hypothesis would be contra-
dicted.

Tterating this reasoning, one concludes that for an
irreducible representation space there is at least one
¢, such that CX(¢,) 5 0 for all I's except the largest
one (Ipa0)-

One such ¢, may then be used to write all the C(¢)
in the form

Cl($) = CH($ICT(P/CTH4,) = CH$)C(9), (29)

where it follows from (18) that C(¢) is a linear
functional independent of 1.
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From (20) or (21) it follows that, using (29), we
obtain

C(‘{’x)C*(‘ﬁz) = C(¢2)C*(¢1)-

Since this equation has to be verified for every pair
é,, ¢., one concludes, putting ¢, = ¢,, that C(¢) is
a real functional.

Substituting now (29) in (22) and cancelling the
CZ(¢4,) that appears in both sides, one gets

—C($)B($o)I + 2) + C($)BH ()T + 1)
— C(¢)B (1) = C$1¢). (30)

Putting ¢, = ¢, = ¢ and multiplying both sides
by I + 1, one obtains a simple difference equation

C(HBHUHUI + DU + 1) — CHBIHU + DI
= —C(HI + 1. B

If C(¢) 5 0, iteration of (31) gives

y($)o _ C(¢2)
2C(¢)°
C(¢)

—_ I a7
W) = (B @+ 5o @)(10 +1).

Substitution of (32) and (29) in (19) gives

[C(¢1)V(¢a) - C(‘Isz))’(‘lsx)llo =0.
Putting y(¢,) = y, the conclusion is that

y(¢) = yC(¢) unless I, =0.

If I, = 0, y(¢) is undetermined. In this case, however,
the first term of the right-hand side of (32) vanishes
identically, and (33) may be adopted for all cases.
From the hermiticity condition (16) and the fact
derived above that C(¢) is real, it-follows that y is an
arbitrary real number. It is arbitrary because B’o(¢,) is
arbitrary.
If C(¢) = 0, one obtains directly from (30)

BY(¢) = —C($41)/C(4),

where ¢, is arbitrary, subject only to the restriction
C(é,) # 0. The two cases C(¢) =0 and C(¢) # 0
may then be described by one equation

BY(¢) = yI/IU + DIC($) ~ Q($),

I -
B II+1)
where

(32)

(33)

(25)
where
Q(4) = C(#»2C($) for C($) #0

= C(¢¢)[C(¢)) for C(¢)=0
and C(¢) #0. (34)

R. V. MENDES AND Y. NE’EMAN

The definition of the current densities as operator-
valued linear functionals requires that both C(¢) and
C(¢*)/C(¢) {[defined for C(¢) 7 0] be linear func-
tionals. Another .candition on the functional C(¢)
may be derived from: (34), namely that for C(¢) = 0
the quatient C(é¢,)/C(¢;), C($,) # 0, be independent
of ¢,.

Now, substitution of (25) in (30) with ¢, # ¢,
leads to

C(¢1)Q(¢2) + C(¢2)Q(¢l) = C(¢1¢2)- (26)
It is easily seen that (26) contains the definitions (34)
and also the linearity condition of C(¢?)/C(¢) for
C(¢) # 0.

All of Egs. (18)-(22) have been used and their con-
sequences derived. We now use the remaining Eq. (23)
to compute the explicit form of C/(4,). Using (29),
(21), and (25), we write Eq. (23) in the form

C($DC($ICH P I + 3) — |CTY($P (21 — )]

_ Y I3C($)C(¢s) _
=+ 100060 — Qg

(26) was used to simplify the right-hand side.
This equation implies that, for C(¢,) = 0,

(1) = Q($)Q(¢y) for any ¢,
and, for C(¢,) and C(¢,) # 0,
[Q(1¢2) — Q($)Q($2))/C($)C (o) = B,

where u is a real number independent of ¢, and ¢,,
in particular

= Q) — Q(¢,).

These two conditions may be summarized in the form

O($r19s) — Q($1)QA(¢s) = p [Cly)] [Tl (27")
|CI(¢,)|* is now obtained from
\ICH$I* I + 3) — |CTH (PP 21 ~ 1)
S EPP,
ra+n "

If 7, is the smallest / in the space, .
Clri(g,) = —A4T($,)* = 0.
Using this condition and iterating (35), one obtains
1) -1}
ICgar = ((I -?; 0 ”)(;(II: 3))(21 +Oi) '
We now prove that the phases of the vectors in the

representation space may be chosen in such a way
that CI(¢,) is purely imaginary, thus implying together

2

(36)
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with the reality of C(¢) that

Cl(¢) = ATX($)

for any ¢ and any 1.

Suppose that one representation has been found
and that the phase difference of CZ(¢,) and A771(¢,) =
—CI(p)* is by

Cl($,) = €A™ (4,).

Now, we multiply all the vectors in each SU2 subspace
by the phase factor exp (37 31} 6,). One sces by
inspection of (11) and (12) that the B’s are unchanged,
and only the 4’s and C’s are changed in the following

way:

(37

Al(,) — [AX($)] = AX($)e 7,
CX(¢,) > [CH()) = CH)7"2,

One obtains then

[CH$)) = [AT($)) = [CU($,)) purely imaginary.

Assuming that this choice has been made, we obtain
the result (24).

We have thus obtained most of the results stated
in the beginning of this section. The I dependence of
the reduced matrix elements has been completely
isolated, and the functional dependence is specified
by two functional equations.

The boundary conditions C(1) = 0 and Q(1) =1
are required for the representations to reduce to the
SU2 representations defined in (9) and (10) when
¢ = 1. If {¢} is a topological algebra, it would be
natural to require continuity of the functionals, and
one should have, in addition, both lim C(¢) = 0 and
limB(¢) =1las¢— 1.

The representations contain only integer or only
half-integer I’s. From (36) it follows that y, 4, and
I, have to be such that

max
DT+ 1 = p 20 for Iy <1< fpgy.

Thus, if u is positive, one has

Yl = n?,
where » is either an integer or a half-integer and the
representation space is finite dimensional. The real
number u is not arbitrary. It depends on the particular
algebra {¢} to be used. Finally, to prove the irreduci-
bility, one notes that the representation space may
be turned into a Hilbert space in a natural way, by
using a scalar product derived from (13) and the usual
completion procedure. Hence, Schur’s lemma wiil
apply whether the space is finite or infinite dimen-
sional, and it will be enough to prove that the only
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operator commuting with all V*(¢) is a multiple of the
identity.

Assuming [X, Vi($)] = 0 and writing

XUy = 3 x(I'l;, I1;)|I']3),
I'rs
we see that it follows from [X, V/(1)] = O that

x(I'T5, 113) = x(1)817107,1,
and from [X, Vi(¢)] = 0 and (11) and (12) that

CHP)x(I + 1) = x(DCY($).
(24) implies that, unless I is the highest [ in the space,
there always exists a ¢ such that C/(¢) # 0. Hence,
x(I) is independent of I, and X is a multiple of the
identity operator. Ji

The solution of the functional equations will depend
strongly on the nature of the algebra {¢}.

In particular, if {¢} is a finite commutative algebra,
one ends up with representations of finite-parameter
Lie algebras.

Of more concern to us in the problem of repre-
sentation of current densities is the case of function
algebras with pointwise multiplication.

In the following section, the explicit solutions of
(26) and (27) will be found, for {¢} an algebra of
polynomials in three variables with pointwise multi-
plication.

4. SOLUTION OF THE FUNCTIONAL EQUA-
TIONS FOR AN ALGEBRA OF POLYNOMIALS

In this section {¢} is an algebra of polynomials in
three variables. A basis for this algebra may be written
{x2,x2, x3; p,q,r =0,1---} The equations to be
solved are (26) and (27). (26) may be written in the

form
= 1(¢(¢) C(¢2)
Cldudy) = 2( e+ o cw»o)

if C(¢y) and C(¢y) # 0, (38a)

Cdd) _ C(dd)
C¢o  C($)

C(4)

if C(dy) and  C(dy) # 0

and C($)=0. (38b)

First we note that the boundary condition C(1) =0
satisfies (38b).

Next, we restrict ourselves to a subalgebra of
polynomials in one variable only, {¢,} = {x?;p =0,
1,2,--+}, and prove the following:

The complete specification of the functional C(¢),
a solution of Eqs. (38), requires that at most C(x), C(x?),
and C(x®) be given.
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(a) Suppose that C(x) = 0. Now, either C(x*) = 0 pattern:

for all £ or there is one k for which C(x*) % 0. From
(38a) it now follows that, if C(x%) =0, C(x*) =0,
and C(xK) # 0, then C(x**#) = 0.

Proof:
Cl(x* + x®)x%]

1 (C(xz“) + C(x*) + 2C(x5*")
T2 C(x*) + C(xK)

c(x®)

+i$K;caKﬂ
0 = 3C(x*),
Cl(x* + x* + xX)x¥]
= }C(™) + C(x*) 4+ C(x*¥) + 2C(x**P)
+ 2C0+E) + 2005 + C(*K)]

= C(x**%) = 0.

Now, using this result, one concludes that, if
C(x) = 0, it is also zero for all the subalgebra gener-
ated by x.

(b) Assume that C(x) 5 0.

(i) If C(x* =0 and C(x?) = 0, it follows from
the result above that C(x?) = 0 for all p > 1.

(ii) If C(x* = 0 and C(x%) # 0, it follows that,
for all the even powers of x, C(x*K) = 0 and, for all
the odd powers, C(x*K+1) is uniquely determined
from (38b):

CxY _ Cth iy

Cx) CG» C&%

(i) If C(»?) % 0 and C(x?)
C(x%®) = 0. From (38a)

= 0, we see first that

(¥ =0 = 1(&":) C)
2\C(xY) C(x)

This implies that C(x*) 5 0. From (38b) we then write

ce + 2 ).

CxYy C(x*) €y  CKY - C(x'%)
Cx) COx)  Cx) D )

implying that C(x¥) £ 0 for K 3 3p and that its
values are uniquely determined from the knowledge
of C(x) and C(x?).

(iv) Let C(x?) # 0 and C(x®) # 0. From (38a) it
is easily seen that, once C(x), C(x?), and C(x%) are
known and different from zero, the values of C(xX)
for K > 3 may be computed according to the following

b

/ \/ \/0\
\\l,

The diagram means: Putting in (38a) ¢,=x' and
¢, = x%, with C(x®) being known, one determines
C(x*); putting ¢; = x* and ¢, = x3, with C(x*) known,
one determines C(x8); with ¢; = x2 and ¢, = x3,
C(x®) being known, C(x®) is determined, etc.

If in this process no C(xX) = 0 is found, then the
process may be carried on and any C(xK) uniquely
determined from the knowledge of C(x), C(x?), and
C(x®). Suppose now that, for a given p > 4, C(x?) = 0
and that C(x?) s 0 for g < p.

From the result proved in (a), C(x*) = 0 implies
C(xK») = 0 for any positive integer XK. From (38b)
one writes

C(le-l-l) B C(xp+2)
Cx)  CGD

So, if one of the terms C(x?+1):--
known, all the others are:

R %
oYy

C-1) s

0= C(x§p+1x§p-1)

- 1(_‘_3(*_”*2
2\C(xPth

)

p-1
S Ry

(x%”“)) )

p even.

Since p > 4, 3p + 1 < p and the second term on the
right-hand side is different from zero, thus implying
that C(x?*%) determined by the above equations is
also different from zero:

0= C(x%(z&l)xi(p—l))

_ e
z(c(x‘}(lﬁl))

C(x™™

$(p-1)
Clx ) C(xt(p—l))

C(xé‘(lﬂ‘l))) ,
p odd.

As before, p>5 implies 4(p +1)<p and
C(x¥@*1) 52 0. Then C(x?+!) is determined and
different from zero.

In both cases all terms from C(x**) up to C(x2*"%)
are determined and different from zero. From (38b)
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we may then write

™Yy
cx)

Cx™ ™y
C(xn—l) - C(xn+1) -

B C(x* Y 3 C(x*"Y)

STy ey’

and the conclusion is that all the C(x*) are deter-
mined and all different from zero except when « = Kp.
This completes the proof of the result stated above. ||

The explicit construction of the general solution of
Eqgs. (38) may now be carried out assuming arbitrary
values for C(x), C(x?), and C(x®) and iterating the
equations. For the sake of brevity, we just present
the final result and then verify that it satisfies (38a)
and (38b) and the results proved above.

For an algebra of polynomials on one variable
{¢(x)}, the general solution of the Eq. (26) is

C($(x)) = (C2n)[p(e + 1) — d(e — )],
O(d(x)) = 3[d(e + n) + ¢(e — )],

where C and e are arbitrary real numbers and # is
arbitrary and either real or purely imaginary.

(39)
(40)

It is a trivial matter to verify that (39) and (40)
satisfy Eq. (26) or its equivalent form (38). They also
satisfy the boundary conditions. We now verify that
the three independent parameters C, ¢, and 7 allow
arbitrary specification of C(x), C(x?), and C(x®) in
accordance with the previous result, thus proving that
(39) and (40) provide the most general solution.
From (39)

Cx)=C, C(x®)=2Ce, C(x%) = C[3¢* + 52].

Thus if C and e are real and arbitrary and # is either
real or purely imaginary, one may arbitrarily specify
C(x), C(x?), and C(x®). One also sees that, if C(x) = 0,
all the C(x*) are zero and, if C(x) # 0 and C(x?) =
C(x®) = 0, then all the others are zero, in accordance
with what was proved in (a) and (b).

So far we have used Eq. (26) only. Substitution of
(39) and (40) in (27) shows that this one is verified too,
if

u = n[C%
Consider now the 3-dimensional case,

{¢} = {Xi’, xg, xQ}

Solving for each one of the three subalgebras {¢, }, one
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gets
C(pi(x) = (Cif2n)[di(e; + 1)) — diles — )],
O(¢,(x) = tldi(e; + ) + dile; — 1)l

Using these solutions with different i’s in Eq. (26),
one concludes that

Ci/m = Cz/’?z = Cy/73.

The general solution for the 3-dimensional case is then
written

-1
C(¢) = C[z(; n?” [d(e +m) — dle — W], (41)
0(4) = Hb(e + ) + be — )],

where C is an arbitrary real number, € an arbitrary
real vector, and % an arbitrary vector, whose com-
ponents are either all real or all purely imaginary.

In this case one obtains from (27)

u=(3t)e

This solution was derived for a polynomial algebra.
From its form one sees clearly, however, that it still isa
solution for any other function algebra with pointwise
multiplication, provided that the functions are
defined at the evaluation points.

For a general function algebra, n will not be allowed
to take imaginary values unless all functions of the
algebra have analytic extension and the evaluation
points are in the common domain of holomorphy;
for then ¢(e + ia) + ¢(e — ia) is respectively real
or purely imaginary, and Q(¢) and C($) are again
real functionals.

Combining now (24) and (25) with (41) and (42)
and using a standard notation for the point evaluation
functionals, we write the final result for the reduced
matrix elements,

AT(g) = Cl(¢)

(42)

2 ooy
- Eli[((I n T n?) (_i(fl_*%l))(?*%]

x [z(; n%)%]'lweﬂ(@ — b)) (43)

BY(¢) = I(I?——fj)[z(z n%)%]‘lweﬂ(qb) — b D]

— 3[0cin(P) + ben(P)]. (44)

The constant C present in (41) was absorbed in y. Each
singleton representation is thus characterized by
Ly, v, €, 1). From point (vii) in the main result of
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Sec. 3, one has

y2
I+ 1y

this implies that, for v real and different from zero,
the representation space is finite dimensional, with

Inex = I7] [+ (Z ?7':'-)%] T

! [+ (Z n?)i]_l= n,

where n and [, are simultaneously integers or half-
integers. For =0 or n purely imaginary, the
representation space is infinite dimensional.

For |n| = 0, the functional C(¢) should be written

C(¢) = CV¢ - 1. (45)

Restricting ourselves to the case of more general
utility, that is, the one with v real, one sees that |y
plays an essential role determining the structure of the
representations. They belong to two different classes:
(D) [ni = 0: infinite dimensional and y is not
quantized;
(I) in| # O: finite dimensional and y is quantized.

~ X7 >0 forall I’sin the space;

and

5. CONSTRUCTION OF PHYSICAL SPACES

The representation spaces of the commutator (3)
derived in Secs. 3 and 4 are denoted K(J,, y, €, W).
The vectors in this space will be characterized by
[Iyyenlly). With the exception of [y, I, and Iy, the
physical meaning of the other quantum numbers is as
yet unknown. It will be shown in this section that,
using the transformation properties of the matrix
elements of the charge densities, one is able to identify
the nature of e and v and, by forming direct integral
spaces, to construct states of well-defined momentum
and rotational properties.

The transformation properties to be considered are

e-PxV,(0)eiPx = Vy(x), (46a)
UR)Vy(x)U(R) = Vy(Rx). (46b)

P is the spatial momentum and R is a proper rotation.

One cannot derive any constraints from the
invariance under time translations because the commu-
tators of the charge densities are equal-time commu-
tators; also, one does not consider pure Lorentz
transformations because the right-hand side of (46b)
would then contain contributions from the space
components V,(Rx), whose representations are un-
known. One starts by rewriting the matrix elements
of the charge densities as distributions on the space

45)
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variable x:

AH(x) = CH(x)

- e’i[ ((1 -y: Dt *Zn?) ﬁ%]

X~ [3(x — € — ) — 8(x — € + W),

2|
(47a)
BI(x) = ¥ 1
I+ 12

X [0(x — € = m) — 6(x — € + )]
—3o(x —e—m) + d(x — e + )].
(47b)
From (47) one sees that (46a) will be verified if the
state vectors |lyyenll;) transform under translations
as follows:
eV |Lyyenlly) = |Ipye + xnll,). (48)
They are thus shown to represent localized states,
€ being the average position.
Forming a direct integral space (in €), one may
define momentum states

Je(IOa Vs 7]) =fd€3€(]o, Ys €, ”l), (49)

\LyyKnlly) = f %€ |Ipenilyyde.  (S0)

The direct integral space ¥(/,,y,n) is no longer
irreducible under the algebra of the charge densities
{V;(x)}, but is irreducible under the enlarged algebra
{Vi(x), P}. Choosing for the generalized states
|Iyenll;) the normalization

(Uoyenl'ly | Iyyenlly) = 6(e' — €)0;.107,1,, (51)
one has, for the momentum states (50),

<onK,nI’I:; l Io)’K"]IIa) = (277)36(K’ - K)(s_p]apah .

From (47) and (50) one computes the reduced matrix
elements between momentum states in the space

XLy, v, 0):
X'|| C(x) |K) .
- ya _ 2 1+ D*—1I3
"[((1 + 1)° > n')(zz +3)QI + 1)]
« sin (K — K) 0 sxxx
)
iyl sin(K—K')-q
I(I+1) (i
—cos (K —K')- n) &KX (52p)

,» (52a)

(K'| BYx) |K) = (—
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For the Fourier transform of the charge density,

Vo) = f Vo(x)eid%, (53)
&'] Cl(g) IK)
¥ I+1D*-1

3
= €’[((1 F1E 12-"%)(21 + 3)QI + 1)] y

X Sil_l_(K—_K_.)'_n 53(1( +q—K), (54a)

[l
(K'| B'(g) |K)
_ (_ iyl, sin(K—K’)-n
II+1) [l
—cos (K —K). 'q)(2vr)363(K + q —- K,

(54b)

going now to the rotation invariance, one sees from
Egs. (52) that (K'| CI(Rx) |K) and (K'| B/(Rx) |K)
would contain the factors

(K—K)*Rx = R (K—-K')-x,

and
XK—K):p=RY(K-K):-Ry.

This shows that (46b) will be satisfied if under
rotations the states transform as follows:

(35)

where I(R) is an arbitrary phase factor that may be a
function of the rotation and of the quantum numbers
of the state as well. The transformation law (55)
implies that one should extend the space J(/y, v, n)
to a space J(/y, ¥, Inl), allowing for all directions of
7 but maintaining its modulus fixed (thus maintaining
the spectrum of y fixed—see Sec. 4):

U(R) |IoyKnIly) = 'R} |I;y RKR0I,),

%Ly, y, In)) = f aQ%(e v, ). (56)

In X(I, v, Inl) we construct now states with well-

defined rotational properties.
Consider first the case of integral spin states.
Making /(R) = 0, one reduces (53) to
U(R) [IyKnll) = |IyRKRIL).  (55)
We define the states

gy InDKSMILy) = f 4D, Yg 30> $o) [LyKnIL),
(57)

where Yg5(0,,¢,) are the spherical harmonics.
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Under rotations they transform:
U(R) [(Ioy In| KSMIIy)
1 27
= UR) [ d(cos )| "a8¥su0, &) 11K i 8, g1

- f dcds )| a8 Y50, &) 11y RK n| RO, $)11y)

1 27
= [ dtcos & [ a9 ¥R 6, $) Uy RK i 6, g1
= 2% D(R)5} 3 |(Isy In|)RKSM'IL,),

where D(R)'® is the rotation matrix for spin (s).
If the normalization (51) is extended to

o€’ In] 0'$'T'15 | Toye n] 0411;)
= d(e’ — €)d(cos 6’ — cos 6)d(¢" — $)0;.,07.,0;,,

(1)
then for the states (57) we get

((Ioy MDK'S'M'T'L; | Ty InDKSMILy)
= (2m)*%(K’' — K)dy o051 10110151, (58)

With /(R) =0 we have thus constructed a space
¥,(1y, v, ml), irreducible under the algebra {Vi(x),
P, M/} (where the M*/ are the generators of rotations),
that contains all integral spins but is bounded in
isospin when || # 0.

For states of half-integral spin the construction is
analogous. One has to find functions Fg (0, ¢) such
that the state

(Ioy MDKSMILy) = f dQF 5300, o) [LoyKnIL)
(59)

has under rotations the transformation property

UR) Loy IDKSMII)
= 3 DRz 3 (Ioy InDRESM'IL), - (60)

where D(R)'® is now a rotation matrix for half-
integral spin. By analogy with the well-known
relation

i
You(0, ¢) = (5, Dliu(s. 0

4
= (2—“—1) D0, —6, —4),

™
we conjecture Fgp(0,¢) to be proportional to
D‘g,"l(O, —0, —¢). From the group property

(3)

(s) (3)
> Dy (R)D 37 w(Ry),

D&M(Rle) =
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one derives the transformation properties of
D5, (0, =6, —¢):

(s) (8)

J‘;'DQM(O —0, =)Dz ap(a, B, 7)

= Dy« (R), —R'6, —R™'¢)

_ ~%M(R)D;sv:4(0 —R7%9, R ¢) (61)

where R is the rotation defined by the Euler angles
(«, B, y) and
«'(R) =ao'(0, 4, R)

sin G cot 8
sin (¢ — a)
The presence of the phase factor «'(R) shows that, in
contrast to D{9,(0, —6, —¢), the set Dgl(o, —0, —¢)
is not closed under rotations. One observes, however,
that, since the factor exp [—4ie’(R)] is only a function
of R, 6, and ¢ and not a function of S or M, one can
make the states (59) have the right transformation

properties (60), if one uses the freedom of choice of
the phase in (55):

U(R) [IsyK [0l 6, $1I5)}

= ¢ H(RMRER[RK 0| RO, PIlg)y. (55")
With (55”) and (61) it is a trivial matter to verify that
the states (59) obey the transformation relation (60)
with

Fou(6, $) = [2S + Df4n] D30, =6, — ).

The factor [(2S + 1)/4n]} was added to endow the
states with the same normalization as in (58).

With I(R) as defined in (55"), a space 3,(Z,, v, In))
is thus obtained that contains all half-integral spins,
is irreducible under {V(x), P, M*’}, is bounded in iso-
spin for [n} # 0, and is unconnected to X,(/,, , [n).

The reduced matrix elements of the charge densities
in the spaces J(/, 7, [n|) are now

(S’M'K'|| C(g) ||SMK)

= arccot (

— cos b cot (¢ — a)).

_ ¥ e U+DP -1 e
- e’[((z o M )(21 + 32 + 1)] ™
x I'(S'M', SM)63(K +q—K'), (62a)

(S'M'K'|| BY(q) |SMK)
= (_ _’?if_';_ F(S'M/,
Inl I(I + 1)
x 27)*8*K + q — K'),
with
S(S'M', SM) = f d(cos O)f déK% 11(0, b)

x cos(JK —K'| [n]| cos 0)K g3,(6, ¢),
(63a)

SM) — 3 (S'M, SM))

(62b)
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T(S'M’, SM) = IK . fdQKSM(G $)

x sin (K —K'| |n| cos 6)Kg5,(0, 4). (63b)

In Egs. (63) Kg(0, ¢) = Yg,,(0, ¢) for integral spin,
Ksu(0, $) = Fgy(0, $) for half-integral spin, and
K — K’ was taken to lie along the z direction.

We have thus shown the feasibility of the approach
proposed in Sec. 1. Matrix elements of the charge
densities between states of well-defined momentum
and rotational properties were obtained. The states
are not necessarily 1-particle states.

Besides the commutator (3) that was our starting
point and translational and rotational invariances,
our only additional assumption is the singleton
character (in isospin) of the representations. The
representations belong to two rather different classes,
the one with || =0 and those with [n| 7 0. We
have already pointed out, in Sec. 3, the distinct
behavior of these classes concerning isospin dimen-
sionality and spectrum of y.

Here too one notes from (63) that, while for || = 0
the matrix elements display a trivial momentum
transfer dependence and would give rise to constant
form factors like the ones that field-theoretical point
particles have, for || # 0 the momentum transfer
dependence is nontrivial and the representations may
be suited to describe particles with structure.

Notice that these nontrivial states appear not as a
result of nonlocality or finite-length assumptions,
but merely as another representation possibility of an
algebra that is strictly local, in much the same way
as the Heisenberg algebra possesses representations
of quite distinct nature for 7 = 0 and /% # 0. This
suggests then that a systematic study of the repre-
sentations of the infinite-parameter algebras of local
operators may be the natural way to generalize the
usual field theoretical structures. The appearance
of the two kinds of structures is a result of the
particular form of the functional equations (26) and
(27) that in turn are a consequence of the commuta-
tion relations (3).

A natural question to ask is whether all Lie algebras
when written in unintegrated form lead to functional
equations whose solutions display a nontrivial space
dependence. That this does not seem to be so follows
from a study of an unintegrated version of the
Euclidean algebra.” The conclusion is then that states
with nontrivial structures are obtained as a result of
the algebraic coupling of internal symmetry (inte-
grated Lie algebra) and the space dependence (algebra
of the ¢’s) and that this coupling does not seem to
occur for all types of Lie algebras.
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In this paper we want mainly to show the poten-
tialities of infinite-parameter Lie algebras studied
according to the approach proposed in Sec. 1. In
Sec. 5 only the model-independent implications of
the representations derived in Secs. 3 and 4 were
considered. In this way we are still left with the
parameters y and [n| physically unidentified. We
leave model construction, the derivation of the
invariant form factors that is referred to below, and
comparison with experimental data and the results of
canonical field theory for a future paper. As a last
remark we notice that the fact that Eqs. (62) are not
manifestly covariant should not come as a surprise.
The choice of equal-time commutation relation,
which was our starting point, already implies a
particular choice of frame. Also the fact that we are
dealing with the time components of the currents
only prevents us from extracting model-independent
information from the invariance under pure Lorentz
transformations.

Had we found manifestly covariant expressions
for the matrix elements written in (62), the invariance
under pure Lorentz transformations would have been
guaranteed. This then suggests that the so far un-
specified frame be chosen in such a way as to make
(62) manifestly covariant. The infinite momentum
frame was found to satisfy this condition for spin 0
and %, and we were able to derive invariant form
factors for these cases. The uniqueness of this solution
and whether it applies in general remains to be
checked.

When this last operation is included in the present
approach, the sequence of its steps becomes the reverse
of the one in the Dashen-Gell-Mann approach.
Whereas in the DG approach the choice of the
infinite momentum frame is the initial step, here
the choice of a particular frame is the last one. The
motivations, however, are rather different. Whereas
in the DG approach the infinite momentum frame
is chosen to simplify the momentum dependence of
the matrix elements and to ensure that the repre-
sentation space contains only l-particle states (with
this last implication dependent on field theoretical
considerations), here a particular frame is picked up
to ensure manifest covariance of the final results.

It is our opinion that the approach here proposed,
being free of the ab initio kinematical constraints,is
very suitable for the exploration of the structural
richness of the infinite-parameter Lie aigebra of local
operators, namely for the study of the above discussed
algebraic coupling of internal symmetry and space-
time dependence, if this turns out to be physically
significant. One might also get more definite indica-
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tions with respect to the physical suitability of the
infinite momentum limit.

6. ADDITIONAL REMARKS AND RESULTS

Since this paper was first written (June 1969),
further results have been obtained by the authors and
by other researchers that helped to shed light on the
constructional approach to the representation of
current algebra proposed in Sec. 1 and on the struc-
ture of the irreducible representations derived in Secs.
3 and 4. The purpose of this section is to make a
very brief summary of those developments.

The technique used in this paper for the construc-
tion of the irreducible representations of the algebra
{V(¢)} was an inducing technique on subspaces of
the subalgebra {V“(1)}. Instead of diagonalizing the
integrated subalgebra {/?(1)}, one could also think of
diagonalizing the generalized Cartan subalgebra [in
this case {V'*(¢)}].® Using this alternative approach
and standard techniques of rigged Hilbert space, we
were able to prove, under very mild restrictions, that,
given any algebra {F'(¢)} satisfying the commutation
relations

[Fi(‘f’l), Fj(¢2)] = iflijk(¢’l¢2)
such that {F‘(1)} is semisimple, then in any repre-
sentation of such an algebra the operators that
correspond to F'(¢) satisfy the following factorization
formula:

Fi() = f () $IF(x).

Although this formula and the defining relation (2)
look remarkably alike, the power of the result lies in
the essential arbitrariness of the measure » on the set
{x} of points in 3-space. The factorization formula
suggests that the representations of the current
algebra belong to as many classes as the number of
possible choices of the measure ». A natural division in
two large classes is obtained immediately: The first one
contains the case where v is a finite discrete measure,
the second the case where v is infinite discrete or
continuous. The second class will lead, in general, to
representations in nonseparable Hilbert spaces.

A complete classification of the representations of
the first class was first worked out in rigorous terms
by Joseph.!® One obtains essentially two subclasses:
one corresponding to representations of tensor
product algebras &, {F*(1)}, the other corresponding
to representations of algebras obtained by contraction
of the tensor products. The representations of the
tensor product subclass had already been obtained
by Roffman.?

In the light of the factorization formula, one also
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sees that the catalog of representations of Chang,
Dashen, and O’Raifeartaigh,’! because of the non-
rigorous nature of its derivation, is not complete,?
and it leads, in fact, to a classification of representa-
tions of the first class. Their results, although less
detailed, are essentially those of Joseph’s paper.

We are now ready to see where the irreducible
representations derived in Secs. 3 and 4 fit in the
general scheme outlined above. It turns out that
the representations, with |y # 0 and real, belong to the
direct product subclass with an SU2 x SU2 structure
and those with |n| = 0 belong to the contracted sub-
class with an E(3) structure. This connection was first
pointed out by Joseph.’® The solutions of the func-
tional equations of Sec. 4 that correspond to ||
imaginary do not appear in the above classifications
because they do not lead to continuous representations
if {¢} is a subalgebra of the algebra of continuous
functions containing the identity and separating
points, with the usual topologies implied.

The above considerations and identifications apply
to irreducible representations as those of Secs. 3 and 4.
In Sec. 5, to obtain states that are eigenstates of
momentum and have well-defined rotational proper-
ties, we had to form direct integral spaces that are
no longer irreducible under the action of the charge-
density operators. It is clear, in fact, that, using
current algebra representations of the first class, one
will always have to form reducible representations
via direct integrals to obtain physical states. It is an
open question whether physical states may be formed
from irreducible second class representations.

Another point that was studied recently pertains to
the hypothetical existence of covariant results in this
approach. It turns out that the sequence of operations
proposed to form representations of the algebra of
current-densities—namely,

(i) study of the irreducible representations of the
algebra,

(i) construction of states of arbitrary momentum
and well-defined rotational properties via direct
integrals,

(iii) choice of a frame allowing covariance—
is, in fact, possible if the last operation consists in
taking the infinite momentum limit. This results from
a peculiar relation between sequences of rotations
and the operators of the E(2) little group of the infinite
momentum frame. We have thus found a partial
answer to the open question of Sec. 5 that, as far as
we can determine at the present time, seems to
display the proposed construction as a probably useful
step towards a solution of the problem of representa-
tion of the local charge densities. Quasicovariant
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representations with nontrivial form factors and
internal symmetry spectrum are obtained. They may
be free from mass spectrum diseases, although this
last point needs further checking.

Detailed derivations pertaining to the results
discussed in this section will be published in a forth-
coming paper.

Note Added in Proof: Because the word spin used
to qualify the states constructed in Eqgs. (57) and (59)
may be a source of misunderstanding, it should be
emphasized that these states cannot be identified at
finite momenta with elements of a Wigner canonical
basis of the Poincaré group. Had they been identifiable
with physical states, Eqs. (62) would have been mani-
festly covariant, as pointed out in Sec. 5. We might,
however, hope that the K, — co limit of our con-
struction coincides with the infinite-momentum limit
of the charge-densities’ matrix-elements between
physical states. Thus, it is only at infinite momentum
that our S can be related to the eigenvalues of W, W,
the square of the Pauli-Lubanski operator. The
authors are grateful to Professor S. Coleman for
raising this point.
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A generalized SU(2) spinor calculus is established on the “background space’ V, of the stationary
space-time. The method of spin coefficients is developed in three dimensions. The stationary field equa-
tions can be put to a form which in V; is analogous to the Newman-Penrose equations. A V/, filling
family of curves is determined by the gravitational field and is called the eigenray congruence. Stationary
space-times may be characterized by the geometric properties of eigenrays. The relation of this classifica-
tion to the algebraic ones is discussed. The method of solving the equations obtainable for various
classes is illustrated on the case of nonshearing geodetic eigenrays. Assuming asymptotic flatness, we

" obtain the Kerr metric.

1. INTRODUCTION

The spinor calculus has recently been widely
recognized as an important mathematical tool in the
study of general relativity. Probably the most signifi-
cant approach to melting the generalized notion of
spinors into the theory was developed in the paper of
Newman and Penrose.! The considerable advance in
understanding the structure of the gravitational
radiational field,? discovery of new exact solutions of
the gravitational equations,® and realization of so far
unknown conserved quantities? are the most important
results based on NP.

Up to now, however, the striking successes of
spinor methods did not extend to the theory of
gravitational fields admitting Killing motions. Killing
vectors could not be fitted suitably in the spinor
formalism, and the only attempt to unify spinor and
Killing vector techniques® apparently did not settle the
problem.

In this paper we want to outline a more useful
spinor approach to space-times admitting Killing
motions. In what follows, for the sake of simplicity,
we shall deal with stationary gravitational fields only,
noting that the formalism equally well applies to
spaces with arbitrary Killing fields. Our method is
based on realizing that the stationary space-times
permit us to introduce a new “relativity theory” in
three dimensions where all methods (like spinor
technique) of the theory can once again be put into
action.®

After a brief survey of the stationary gravitational
equations (Sec. 2), we shall develop the spinor algebra
and analysis (Secs. 3 and 4, respectively) in stationary
space-times.

In curved space, a generalized version of SL(2, C)
spinor calculus has long ago been introduced in the
literature.” The SL(2, C) group of which the spinor
representations are dealt with here is the tetrad
transformation group. For a detailed treatment of

this interpretation we refer the reader to Ref. 8. The
timelike Killing vector field distinguishes a direction
in every point of the stationary space-time. Conse-
quently, the SL(2, C)— SU(2) contraction of the
tetrad rotation group occurs. Usually this contrac-
tion is executed by making spinor components of
lower primed index equal to those of upper unprimed
index.® This procedure will now be generalized in a
covariant manner which makes it easy to go over to
other subgroups of SL(2, C).

In Sec. 5 we shall develop the method of spin
coefficients in the “background” space ¥V, and find
the relations between the spinor quantities defined in
the 4-dimensional space-time and in V. The station-
ary Einstein equations manifest themselves in the
form of scalar differential equations which are the 3-
dimensional analogs of the Newman-Penrose equa-
tions (NP), as will be shown in Sec. 6. Again the
equations have strict geometric meaning, which fact
will be exploited in establishing an invariant classifi-
cation of the fields in terms of the “propagation”
properties of a certain congruence of curves in the
background space. These curves, called the “eigen-
rays,” are uniquely defined in ¥ by the gravitational
field itself.

Up to now the Kerr metric appeared an “incident”
solution of the stationary gravitational field equa-
tions.’ In Sec. 7 we shall show how this solution can
be obtained systematically from the governing
equations of stationary gravitational fields. It will be
seen that the eigenrays of the Kerr metric are shear
free. The results for stationary metrics with shearing
eigenrays will be published elsewhere.

2. STATIONARY FIELD EQUATIONS

We now briefly recapitulate the theory of stationary
space-times.!1—18 '

The stationary gravitational fields are characterized
by the existence of a timelike Killing vector field a,
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satisfying!¢

aulv + avlu =0. (1)

The coordinate system can be chosen such that

x° = t is the trajectory of motion. Then we have
a* = o}

and g,, independent of ¢.
We write the line element of the 4-dimensional
space-time ¥, in the form

ds? = —f~1ds? + f(dt + w,; dx?)?. (3)

@

Equation (3) may be regarded as the definition of the
“background” V; with the spacelike line element
ds? = g, dxt dx*.

The t-independent form (3) of the line element is
preserved by the following transformations:

xi’ — xi’(xi), (43)
=t 4 1°%x’). (4b)

The (3 + 1) decomposition of the 4-dimensional
Ricci tensor yields the relations

(0 — G, + G)G = —f"Ry, ®
Gy — Gpa + GG, — GG, = —if "enRi@t, (6)
R, + GG, + GG, = f g, R — giiR). (7

Here the complex 3-dimensional vector G, is defined
by

G,'= &2/, ®

where, following the notation of Ernst,!
& d’-e=ff,i + i, ®
7 & e (). (10)

Now the Einstein equations

R, —13.,R= —kT,,

Y

(11)

are to be imposed upon the Ricci tensor R,, of ¥,
in identities (5), (6), and (7). In the absence of matter,
the right-hand sides vanish.

-Formally, in Egs. (5)-(7) and (11) a 3-dimensional
relativity theory in ¥V, in the presence of an additional
complex ‘“‘material”’ vector field is comprised,® (7)
providing the Einstein equations and (5) and (6) the
“matter equations” in V.

3. SPINOR ALGEBRA
Spinors are connected with world tensors by the
quantities o, 4 satisfying’

o o _ 5
04400+ OvacOup’ = En€an (12)
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in each point of V,. Now the coordinate system is
chosen according to Eq. (2) such that ¢, 4, need not
depend on t. Actually, we shall always take o,
independent of ¢. For a fixed u, [0, 5] is a 2 X 2
Hermitian matrix:

Guan = Oupy- (13)

Spinor indices are raised and lowered by means of the
real antisymmetric metric spinor € 4j; according to the
formulas

¢l = EABEB s (14)
&y = EPepy. (15)
€4 can be chosen such that?
01
=Tle,pn]= . 16
lear) = leanl = | | (] (16)

In stationary space-time the Killing vector a*
contracted with the connecting quantity o, 45 yields a
link between primed and unprimed spinor compo-
nents. With the choice (2) of the coordinate system,

(17

The (3 + 1) decomposition of the defining equation
(12) of ¢’s yields

—
Cuap@ = Ooup-

O'OAC'O'DBC’ = {feqn (18)
and, introducing the quantities o’z by
; def N ’

o4n = (=24 Nolc0s, (19)

o'y — 054 =0. (20)

From the spacelike components of Eq. (12) we get

0ig%i5 + 0,605 = 8i¥5 - 1)
By use of the identity
€4i€CcD) = 0, (22)

it is an easy exercise to derive the useful formula

0:4500p = —Heacenp + €4peno). (23)

The quantities [0, 5] satisfy the commutation re-
lations of the generators of an SU(2) group:

6i400i5° — 0,400i° = 2éi€i7‘kGZB(g)%' (24

This equation can be proved to hold at any point of the
space-time by introducing locally Minkowskian
coordinates.

The invariant g, 45 relates an arbitrary spinor &4
with

48 ) oy AP E. (25)
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£ will be called the adjoint of &% In stationary
space-time a special representation of [(2/)}¢,*%]
is the unit matrix. On restricting the spin transforma-
tion group to SU(2) which preserves the form of unit
matrix only, one would get to the usual SU(2) spinor
calculus and could drop the trivial (2/f)*oy*®" factors.
However, we now will not use this restriction in order
to make the method applicable for arbitrary Killing
motions.

The adjunction operation, applied twice to a first
rank spinor &4, affects as a factor (—1):

e, =ty (26)
The complex conjugate of a scalar product of two
spinors:

Eir = En'*. @7)
Especially,

Eir® = mig*. (28)
We define the norm of a spinor by

[HRE (29)
With the special representation of (2/f)2ay*® we have

612 = 1&1* + |&17, (30)

so that the norm is real and nonnegative.

Higher-rank spinors under adjunction operation
may behave in a definite manner. For example, in our
formalism

+
O4p = —O4y (1)
corresponds to the usual notion of hermiticity [note

the minus sign in Eq. (31)]. Actually, by use of Eq.
(24) it can be proven that o’y satisfies Eq. (31).

4. SPINOR ANALYSIS

The covariant derivative of a first-rank spinor &,
taken in ¥, is defined by®

£ b — Dk (32)
I~’uB 4 is called the spinor affine connection of V.
Stipulating that the 4-covariant derivatives of o,
and e 45 should vanish, we get the explicit expression

for the quantities ', ;:
f‘uBA = %—O‘aBF’(UﬂAF’Fyﬁa + Gle’.ll)' (33)
In ¥V, the covariant derivative of a first-rank spinor

is defined similarly:

£y e — DBy (34)
On requiring
Giap;; = €4pii = 0, (35)
I",Z, takes the form
T2 = —307%0k 0. + T dhic). (36)
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We want to have f‘,‘B 4 expressed in terms of I';/% ;.
The results of the rather lengthy calculations are

i 1
IOBA= —2\/2 J’BAGj, 37)
= 1 ; i & .
Fz‘BA = Fz'BA - m wiajggi - QE €k 7 Glg(g)%'
(38)

Here we note that one has to take care of the
commutation of covariant differentiation with adjunc-
tion of spinor because [(2//)ty*?].; does not vanish

necessarily.
5. SPINOR BASIS

In the spin space, a basic spinor dyad £, ,,
(39

bau=o04, Lu=1y,

is introduced, with the aid of which any spinor can be
expressed as the set of its dyad components (NP),
e.g., the spinor &5 has the dyad components

AyBFC’
Eabc’ = éABC’Za Cb ¢ s

the algebraic properties being unaltered in the dyadic
form. The normalization is chosen to have

(40)

4= (41)

0yt
for the dyad.
The spinor base fixes a basic vector tetrad (J*, A*,
mk, m*) in V by
iﬁ‘ = OAUuAB’O_BI,
it = 10"y, (42)
W' = 0,048y,

In V3, we adopt the vector base zi,; m = 0, +, —,

25 = I,

i i
Zy =m, (43)
zt =

with /¢ real and with the orthonormality properties

1 00
[Zwiz, ] = [gm] = |0 O 1|, mn=0, +, —,
010
(44)

This basis can be traced back to a novel spinor dyad
Nea = (04, N'4) With the norm

;
=1 (45)
via the relations
I = —24n,40"5;,
m' =1 0Py, (46)



3386

The # dyad is essentially a specialized SL(2, C)
spinor base and in stationary space-times (with
timelike Killing vector field) it may be called the

SU(2) base.

The transformation rule between the bases is of the
form
(47)

lod = “abﬂbA

with det [«,”] = 1. In the following, we shall stick to
the convenient particular choice

o4 = /N,
Ly = (f12)n), (48)

of the { dyad.
Now the (3 + 1) decomposition of the basic tetrad

in V, can be done. The results are

=1 f7 = (07),
= (f)m',—(m;0’)),
fi* = —3fl* + a*.

The adjunction rules for 7-dyad components of
spinors follow in a straightforward manner from the
above definitions:

(&) = (&1,
(&) = —(£Mo-

As it was found in NP, the Einstein equations can

be put down as a set of geometric conditions for the

spin coefficients [0 - The definition of spin coeffi-
cients is taken as follows:

(49)

(50)

(S

i def A .y
Parear = Lol obar»
I',;o being symmetric in the first pair of indices:
Popear = f‘bc;wal' . (52)

That means that, in the general SL(2, C) spinor calcu-
lus, one has 12 independent complex spin coefficients.
In NP, each of the quantities [,,.q is denoted by a
single Greek letter:

ab 01
00 or 11
cd’ 10
00’ K é 7
[ = . (53)
abed 10, i)' & Z
o1’ & B i
11’ F 7 7
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In our curious “SU(2) formalism,” a similar
definition can be given for the spin coefficients:

(54)

det naA;infGZda
[',5.q being now symmetric both in the first and second
pair of indices:
(55)
such that one has now four complex and one pure

imaginary (I'y,) spin coefficient. With the individual
nomenclature, we have

Fabcd = 1-‘bawd = Fabdc s

cd % 00 (1)(1)} 1
00 274 —i7 245
s =
o | —he | e -k
11 —27% —3r | —2%
(56)

Here the numerical factors are introduced in order to
make the final relations as simple as possible.

We now need the notion of complex Ricci rotation
coefficients which are the analogs of spin coefficients in
vector terms:

(57)

Using the well-known correspondence between spin
coefficients and Ricci rotation coefficients (NP), we
can express each of the Ricci coefficients according
to the following table:

mn
—0 | 40 | +-
P
1 L T R I e
+ p c ~T
- G P 7

For the scalar differential operators 8, = z,,0;, we
use the notation

do=D, 9,=96, 0_=3. (59)

The correspondence between SL(2, C) spin coeffi-
cients and ours can be established by use of the
decomposition (37) and (38) of the 4-dimensional
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affine connections. We merely report the results:

f_i(" —2Gy), &= (PQ2e+ G, — Go)s
(fY2)R, p=p+ G, G=0,
—(Fi2)e, &= (fH40r + 6. =G,
— (Y427 + 3G, + G,
—(f[8)(2e — 3Gy — Go),
(125, g= (2D + Gy,

7= (fH4)(—& + 2G_).
These relations will be of great value when studying

the 3-dimensional ray optics and Petrov types of
stationary. gravitational fields, in the next section.

K

EN
Il

T n
Il

(60)

7
A

6. THE FIELD EQUATIONS IN NEW GUISE

The identities (5), (6), and (7) are rewritten in
terms of “triad components”, i.e., with all quantities
projected onto the vector base z,:

G+ V' G" — (G, — G,)G" = —1, (61)

Grin = Goim = Ym'aGp + 74"nGy — GGy + G,Gp
= —ie,, %t (62)
R,.. + G,,,G,, + G,,,G,, =20,,, (63)
where the shorthand notation
2R ¥ 2, (64)
[PREL (65)
FHRY = g9 Rz imzin = 20, (66)

is being initiated for the decomposed Ricci tensor of
V,. Together with the above relations, the Ricci
identities in Vj, acting on the base vectors z,,, are
Rmnpa = Ymnpia — Vmnaip + yrmqymp - yrmyqu

T VoY oa = V') (67)
the decomposition of the 3-dimensional curvature
tensor into irreducible parts,
R""‘PG = —ngR'lG + gmGR"P - ganmp + gnpqu

- %R(gmqgnp - gmpgnq)a (68)

and the commutator of operations 9, acting on a
scalar function ¢ (NP),

Pimin — Pimm = Vm'n = Vam@:r,  (69)
are written out in full detail. From (61) and (62) we
have
DGy + 6G, + 8G_ — (p + p)Gy + (x — DG_

+ (& — 7)G, = (Gy — Go)Gp — (G, — G)G_
— (G- — G)G, = —4, (70a)
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8G, — DG_ + pG_ + 6G, + <G,
— eG_ — GG_+ G_Gy = — x5,
8Gy — DG, + oG_ + G, + «G,
+ G, — GG, + GGy =y_, (70c)
8G, — 6G_ — pGy — G, + pG,
+7G_— G,G_+ GG, = yx. (70d)

The Ricci identities (67) when combined with (68)
and (63) yield

Do — dxk — €0 — Tk — k* + a(—e — p)
— po + 20, — 2G,G, =0, (7la)
Dp — Ok + Tic — kiR — 06 — p* + Dgy — GGy = 0,
(71b)

(70b)

DT—55+KE—pE+Te—eE+7"6—Tp
+ 20, — G,G_ — G,G_ =0,
dg — 8p — 270 — x(p — p) — 2D,
+ GG, + GG, =0, (71d)
Or + 07 + 06 — pp — 277 + €(p — p) + Dyo
—20,_ 4 GGy — G,G_—G,G_=0. (7le)

It is a remarkable fact that, while in the 4-dimen-
sional theory the Ricci identities mean 18 independent
conditions on the rotation coefficients, we now have
five relations only. For ¢ real, the commutators (69)
give two equations:

(D6 — 0D)p = [(5 + €)d + o + «Dlp, (72a)
(68 — 88)p = [76 — 78 + (5 — p)D]g. (72b)

Equations (70), (71), and (72) can equally well
be attained in the spinor dyad formalism. To the
Newman-Penrose equations the spinor calculus offers
the simpler way. Here, on the contrary, the use of
vector terms is somewhat more advantageous.

In order to get to the new form of the stationary
gravitational equations, of course, one has to impose
the Einstein conditions (11) upon the quantities
®,,s %m> and 4 in (71), (72), and (73). The geometric
meaning of this approach to the stationary space-
time problem will be pursued in the remainder of
this section.

Most of the rotation coefficients in ¥, have their 4-
dimensional analogs, which fact is stressed by singling
out the corresponding rotation coefficients by the
same Greek letter. Thus, «, p, and o express in V5 the
same properties of the congruence to which /* is a
tangent vector as k, j, and @, respectively, in ¥, for the
congruence with [* tangent. In particular, —«x =
mil ;I is the first curvature of the congruence pro-
jected onto m*; « vanishes if and only if the congruence

(71c)
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is geodetic in the background V. Then

Re p = —3l'; (73)
gives the divergence,
Im p = 3[(k,; — L) (74)
is the rotation, and
lo] = 2 ¥l 15 — 3P (75)

is the shear of the congruence. The imaginary quan-
tity € = m, ;' shows how the (m, ) pair rotates
when moving along the congruence. As such, it is
not characteristic of the geometry of the congruence
itself, and in this respect it resembles &. The only
rotation coefficient not having a 4-dimensional
analog is 7 = m, n'm’.

In the following considerations it will prove useful
to introduce the notion of eigenrays of the stationary
gravitational fields. To this purpose, we momentarily
take /# tangent to a geodetic congruence in ¥, and,
making use of the fact that the length of /* is constant
(zero), we put the geodetic equation for the con-
gruence in the form

(iu.v -

From the (3 + 1) decomposition (49) of I*, it is
seen that, for u = 0, (76) is identically satisfied. We
are left with the 3-covariant equation

fli;jlj +f;i - (f;jlj)li + fijktp"l"(g)’l’ =0. (77)
Now, if the purely algebraic requirement for /%,
S — (G + en@'l(g)t =0, (78)

is fulfilled, then /¢ is tangent to a geodesic in V.
(78) gives two independent conditions on /* because
its I* projection is identically satisfied. Therefore,
given the vectors f;; and ¢;, (78) uniquely determines
the direction of [ If the space-time is static (¢, = 0),
(78) means that /¢ is in ¥, the unit-normal vector of
the equipotential surfaces f= const. For a general
stationary field, the geometric content of (78) is more
complicated and can be visualized as shown on
Fig. 1. The curves defined in ¥; by Eq. (78) will be
called the eigenrays of the gravitational field.

On projecting Eq. (78) onto the base vector m?, it
takes the simple form

G, =0.

L)l =o. (76)

(79

In many cases, a convenient choice of the base vector
I* can be made by putting it tangent to the eigenray
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(R

plane with
{ normal

£ x2 =N projection of grad f

Fic. 1. The “eigendirection” of the gravitational field.

congruence. The only remaining “triad transforma-
tion” is then of the form

m’ = me'C, (80)

where C is an arbitrary real function.

An invariant classification of stationary gravita-
tional fields can be achieved leaning on the “optical”
properties of the eigenray congruence. In Ref. 6
it has been suggested that stationary axially symmetric
fields should be classified by the algebraic structure of
the trace-free part P{ = R] — }8/R of the 3-dimen-
sional Ricci tensor. It was found that the asymptot-
ically flat fields are either general type (G) or, if two
eigenvalues of P/ coincide, degenerate type (D). An
important example of type D spaces is the Schwarz-
schild solution, while in this scheme the Kerr metric
is of type G.

This invariant classification can be retained un-
altered when dropping the restriction to axial sym-
metry (P} is then defined in ¥;). The scheme is now
refined by considering the propagation properties of
the eigenrays. In particular, the space-times with
geodetic eigenrays are characterized by G, =« =0
and, if in addition Re p, Im p, or ¢ vanishes, then
the eigenrays in V, are divergenceless, nonrotating
or shear-free, respectively [cf. Eqs. (73), (74), and
(75)]. In Sec. 7 we shall point out that the Kerr metric
possesses nonshearing geodetic eigenrays and just
this property yields the reasonable assumption
under which the Kerr solution can be derived from
the stationary field equations.

Now, for the rest of this section, we turn to the
interrelation between the Petrov types and our
classes.

If I is fixed by (78), then in general /* is not a
geodesic tangent vector in Vj; but if it is, then the
eigenrays are geodesics of V5. Restricting ourselves to
vacuum space-times (R,, = 0; for the rest of this
section this condition will be assumed to hold), from
the Goldberg-Sachs theorem (NP) we find that a
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stationary space-time with shear-free geodetic eigenray
congruence is algebraically special. This fact reappears
when we express the dyad components of the 4-
dimensional curvature spinor in terms of 3-covariant
quantities?®:
Wo= — Ryp, sl “mP I

=2[6G, — 06Gy + 7G, + (2G, + G )G ],
¥, = — R, A I’

= —(N*IDG; — kGy — <Gy + (2o + Gr)G

(81b)

(81a)

5
|

= — 3R, 5,(I"AP1'7° — 1P i)
=}f[DG, + kG, + kG_+ (G, + Gp)G, — 2G,G_],
(81c)

IP‘4 = _ﬁaﬂyaﬁa’hﬂﬁyﬁqa

=1f*8G_— 5G, +7G_+ (2G_+ G)G_]. (8le)

If a geodetic eigenray congruence exists in ¥ and /[’
is chosen to be its tangent vector (G, = x = 0), then
¥, vanishes. If, in addition, the eigenray congruence
is shear-free (¢ = 0), then ¥y =¥, = 0 and the space
is algebraically special; /* is one of the propagation
vectors (NP).

7. GEODETIC EIGENRAYS. THE KERR METRIC

In this section we shall establish the field equations
for vacuum stationary space-times with geodetic
eigenrays, and, thereafter, the way of solving them
will be illustrated on the particular class of non-
shearing eigenrays.

We have

® =y =1=G, =«x=0. (82)

The coordinate x! will be chosen the affine parameter
r of the eigencongruence. The x%, a = 2, 3, label the
eigenrays. With this choice, we may write, for the
vector base,

/= 6,
m' = wd] + &%, a=2,3. (83)
The scalar differential operators have the form
b2,
or
0 0
d=w—4+&—. 84
“or +e 0x* (54

(The summation convention is understood to hold
for the index a.) The coordinate freedom (4a) thus has
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been reduced to

v =r 4+ r(x*) (shifting the origin),  (85a)
x¥ = x%(x?) (relabeling eigenrays). (85b)
By use of the “triad freedom” (80), ¢ = m, /%'l can
be made zero and still remains
w' = me'”’ (86)
with C° real and independent of r.18
The connection between the metric tensor and spin

coefficients is achieved by applying the commutators
(72) to each of the invariants r and x*:

Do = pw + 0d, (87a)
D& = &t + 0f*, a=2,3, (87b)
0 — dw =7 — 10 + p — p, (87¢c)
Of* — 88 = Ff* — 7£% a=12,3. (87d)
From Eqs. (70) and (71) we get
Do = (p + p)o, (88a)
Dp = p® + 06 + G,G,, (88b)
Dr = pr — 67 + G,G_, (88¢c)
DG, = 2pGy + (Gy — G,)G,, (88d)
dp — 80 = =207 + G, G,, (88¢)
Or + 67 = pp — 06 + 277 — GoGy + G_G,. (88f)

The identities (70b)—(70d) yield no new information
because they are consequences of the system (87).

Equations (87) and (88) form a complete system
for determining the field quantities in a vacuum
stationary space-time with geodetic eigencongruence.
As it was stated in the preceding section, the invariant
¥, now vanishes. For ¥y we have

Y, = —26G,. (89)

Thus, we must not expect new nonshearing metrics
(¢ = 0) from Egs. (87) and (88) because this class is
trivially contained in the soluble case ®,, =¥, =
¥, = k = & = 0 of the Newman-Penrose equations.
The spaces with nonvanishing ¢ arise, however, from
equations which previously have not been considered.
The study of this class deserves, therefore, more
attention and is put off to a forthcoming paper. In the
following, we will be content to solve the system (87)
and (88) for

c=0,

(90)

assuming asymptotic flatness. The equations like the
Newman-Penrose ones offer a well-determined se-
quence in which they can be solved in turn. First, the
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“radial’”’ dependence of the quantities is to be obtained
from the equations containing the operator D. Then
the r dependence of the quantities is substituted into
the remaining equations and the coefficients of the
linearly independent r functions are separately made
equal to zero. The conditions so obtained yield the
“angle” (i.e., x*) dependence of the radial integration
“constants”.

Equation (88a) is identically satisfied by the con-
dition (90), and initially we have to solve the coupled
system
(91a)

(91b)

DP = P2 + GOGO’
DGy = 2pGy + (Go — Go)Go.

This system can be solved by the matrix method which
has been described in Ref. 3. We define the (2 X 2)

matrix N by
Gol
Nd-_e-fl:P | °}. (92)
IGol 5
N satisfies the equation
DN = N2, (93)

The solutions of this equation can be classified
according to whether or not det [N] = p5 — GG, = 0.
For the nonshearing class and for this class only,
the Newman-Penrose equations reveal an alternative
way of solving the system (88b, d): Namely, from it

the equations
D(p + Go) = (p + Gof*, (94a)

[D — 3(p + Go)]DDE =0 (94b)

are derived. The solution of (94) is easily found by
successive integration. However, the results are to
be substituted back to (91b) because (94b) has been
obtained by differentiating this equation.

We adopt the weak condition of asymptotic
flatness

lim & = 1. (95)

o0
We can write the r dependence of the quantities p, G,
and &, after taking into account the above asymptotic
prescription, as

p=—(r—m+ix)/R’, (96)
mr+ ix

Gy =— ——, 97

T Rr—ia ©n

E§=1-=2m/(r — in), (98)

where « and m are real integration “constants’ not -

depending on r,
R:=r%—2mr + of,

(99)
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and use has been made of the coordinate freedom
(85a).

It is now obvious that the split of the solutions
of Eq. (93) was unessential, and the occurrence of it
must be regarded as a drawback of the first integration
method in the nonshearing case.

The remaining radial equations are solved by using
the standard integration methods, and yield

SR (100)
2-0 . — 3 .
[Py Lrmni)
b R 2if r—m+ip R

B =" —md, (t01)
where the phase factor is of the form

i (————’ — = iﬂ)alzﬁ. (102)

e =

r—m+if

By the coordinate transformation (85b), £%* = P and
&0 = [P can be effected and, by the rotation (86), P
can be made real. Thus, the base vector m is com-
pletely fixed and the only coordinate freedom in ¥ is

(103)

where z = x? + ix®and Z’ is an analytic function of z.3
From the nonradial equations we extract the
following relations:

7' = 7'(2),

66 =0—>m =const and «°=iPVa, (104a)
(87d) - 1° = VP, (104b)
(87¢) = Im (PV® — mw® + ix) = 0, (104c)
(88f) — Re (PVao® — 7% = 0, (104d)

and _
P(V1® 4 V%) = 1 4 27970, (104e)

Here V = 2(0/02). Finally, Eq. (88¢) is identically
satisfied.

Using (104b) and (104e), we get the following
equation for P: '

PeVViIn P2 = 1. (105)
From (104c) and (104d)'7:
VVo = —P 2. (106)

In an appropriate coordinate system,!® making use
of the transformation (103), we can write the solution
of Egs. (105) and (106)

Nt

pitzz 1=z (107)

22 14z

N
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with @ = const; w® and 7° are obtained from (104a)
and (104b):

BRI U (108)
1+42zZ \/ 2
Transforming to the real coordinates 6 ¢ by
= e ctg (30), (109)

we find that 9/d¢ is a Killing vector, and thus we have
axial symmetry. By solving Eq. (10) for »* and elim-
inating the arbitrary gradient term in * by (85a), the
Kerr metric'? in the well-known form is reconstructed.

8. CONCLUDING REMARKS

There are several points of the present approach to
Killing motions the clarification of which deserves
more detailed investigations. First, one could
mention the problem of physical interpretation of
such abstractions like the eigencongruence or the
basic “triad”” in the background space. For a* timelike,
it is clear that a well-established correspondence
exists between properly moving observers or labora-
tory frames and the base triad; the existence of
geodetic eigenrays means that the space-time admits
a special family of “pale” (in the sense that T, ~ 0)
light rays being excelled by the property that, when
perceived in the background V,, they propagate
geodetically.

Second, to avoid unnecessary complications in the
presentation, we had to adopt several simplifying
assumptions, thus gradually having tightened the
class of space-times considered. We do not see any
direct method but solving the field equations (as
shown in Sec. 7) to decide whether or not so-far
unknown metrics can be obtained by dropping some
of the restrictions.2® To summarize the latter, we
have assumed that the Killing field was timelike,
that there was absence of matter (from Sec. 6 on), and
that the space-time possessed a shear-free geodetic
eigencongruence and was asymptotically flat (Sec. 7).

The investigation of all classes with geodetic eigen-
rays needs tedious calculations, which nevertheless do
not differ in principle from the illustrative example
given in Sec. 7. In the near future we plan to publish
the results of these calculations.

It is not obvious whether gravitational fields with
“weaker”” than Killing symmetries can be involved in
our considerations. Even for quite general space—times,
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the (3 + 1) split of the field equations combined
with SU(2) spinor approach might prove of use. The
well-known conjecture of Israel®! on regular event
horizons is an example of problems to the research of
which our approach might contribute as a useful aid.
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We study the Maxwell equation for the electric potential inside a neutral nonuniform cylindrical
plasma in an external oscillating electric field, from the point of view of the inverse problem. The loga-
rithmic derivatives of the radial Fourier components of the electric potential at the edge of the cylinder
are considered as experimental data. We obtain an explicit and exact representation of the electron
density in terms of the high frequency behavior of the experimental data. The general analyticity
properties in the complex-frequency plane are also discussed.

1. INTRODUCTION

This paper is devoted to the study of a cylindrically
symmetric nonuniform plasma from the point of view
of the inverse problem. In its general philosophy, the
problem is to obtain information about the plasma,
namely its local electron density, from certain suitable
experimental data. This approach to the relationship
between experiment and theoretical model has already
been developed in other fields of physics, e.g., the
diffusion process of sonic and classical electromagnetic
waves and the quantum scattering of elementary
particles by a potential. The starting point of this
investigation turns out to be, in fact, the mathematical
analogy between the stationary radial Schrédinger
equation of the theory of scattering by a spherically
symmetric potential and the Maxwell equation for the
electric potential existing inside a very long (infinite)
cylinder of plasma. We shall see, however, that this
apparent analogy does not mean a straightforward
application of the mathematical techniques used in
scattering theory. Our interest is confined to the very
simple model which is characterized by the following
assumptions: (a) the plasma is cold and (b) neutral,
(c) the positions of the ions are fixed, (d) the devia-
tions from the equilibrium position are small so that
the continuity equation together with the equation of
motion can be linearized, and (e) the plasma magnetic
field can be neglected.

The mathematical aspects of this model have been
extensively discussed by Barston' for a free plasma,
where the interest has been focused on the singularities
of the radial equation satisfied by the electric potential.
These singular points are the zeros of the dielectric
constant, and they have been shown to be related to
resonant absorption processes when a cylindrical
collisionless plasma is driven by an external oscillating
electrostatic potential.?

We consider now the use of this model in plasma
daignostic. Although many techniques have been
developed to measure the electron density profile,

it seems to us to be worthwhile to investigate the
possibility of determining the density profile from
completely external measurements, that is to say, from
measurements which do not perturb the plasma itself
at all.

This point of view has been recently adopted in the
case of a plasma slab in the cold approximation® where
the inverse problem has been solved by taking as ex-
perimental data the ac resistance of the slab as a func-
tion of the frequency.

In our case, due to the infinite length of the cylinder,
the problem is defined in a plane perpendicular to the
axis of the cylinder where we use polar coordinates,
namely the radius r as the distance from the center of
the cylinder and the polar angle 6. The experimental
information we need to construct the electron density
n(r) as a function defined in the interval 0 < r < R,
where R is the radius of the cylinder, is obtained by
placing the plasma in a uniform (z-independent)
oscillating external electric field and detecting the
angular dependence of the electric potential and of its
radial derivative at the edge of the cylinder.

As we show in Appendix A, we are interested in
that part of the electric potential that oscillates with
the frequency w of the external electric field. This part
can be written

+o0
O(r, 8, 1) = exp (iwt) D PYMN(w; r)exp (ikh), (1.1)

k=—o0
where the constants ®; depend on the boundary
conditions and ¥V (w; r) satisfies the radial equation
(A18). For future convenience, we consider the
following function:

yalos 1) = (3 ),

which satisfies the equation

(1.2)

iz (w'r)+V(w'r)-iy(w'r)
drzyk ’ arTt

2

_ (" i S r))yk(w: n=0 (13
b 2r
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where

1 4 0. (1.4)
QXr) — o(w — iv,) dr
Equation (1.3) can be derived from Eq. (A18). Any
solution of Eq. (1.3) either diverges at the origin as
r3-18 or vanishes there as ri+¥ k= 41, £2,---5;
however, the boundedness of the electric potential
requires the vanishing at the origin of the physical
solution y,(w;r). In our notation the solution
gpu(w; r) = g_x(w; r) is understood to be determined
by the boundary condition

V(w;r) =

S aalal k=0, +1, +2,---.

(1.5)

For any physical value of w, we now define the
infinite set of functions

limr pr(w;r) =1,

r—0

o () = ( L " 40 exp (ik6) %@(R, 6, t))

X ( L "4 exp (ikO)D(R, 6, t))_l

= iln @@ Drer — ZLR
as the experimental data to be used to construct the
electron density n(r). We note that this definition does
not depend on the normalization of the regular solution
of Eq. (1.3) so that the choice of the solution g(w;r)
is only a matter of convenience.

In analogy with the quantum scattering theory,
starting from the knowledge of the function o (w)
of two variables, the discrete variable® k =1, 2, 3,
-+, and the real positive continuous variable w, we
can consider two different approaches to the inverse
problem, namely one that uses the frequency de-
pendence of the function o,(w) at one fixed value of k
and the other which uses the sequence of numbers
{on(w)}, at one fixed value of the frequency w. The
aim of this investigation is to find simple and exact
relationships between the electron density n(r) and
the function o,(w) rather than to discuss the unique-
ness and existence of the solution of both the inverse
problems. In Sec. 2 we discuss the analytical structure
of the function o4(w) in the complex w plane, and in
Sec. 3 we develop an asymptotic expansion method
which allows one to reconstruct the electron density
function from the high frequency behavior of the
function o(w), for all possible value of k.

In Sec. 3 we also briefly consider the possibility of
applying these results to phenomenology. For
completeness we give a short derivation of the radial
equation in the Appendix.

(1.6)
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2. THE COMPLEX FREQUENCY PLANE

In this section we give some general analyticity
properties of the solution ¢(w; r) and of the function
a(w), considered as functions of the complex variable
w. First we introduce the following simplifying
notation:

r=Rt, Q =Q0), QR = QIF(),
o(w — iv)Q? = z.

.1

After simple substitutions in Eqgs. (1.3) and (1.5), it
turns out that the function

Du(z; 1) = R pu(o;r), k=1,2,3,-+-, (22)

is the solution of the equation

F'(t)
Du(z;t) + ———— Dy(z; ¢
#(z )+F(t)—z 123 1)
k*—1 1 F() ) d
- . (D > t) = 0’ ' =,
( 2 +2tF(t)—z Kz 0) dt
2.3)
satisfying the z-independent boundary condition
lim 9@, (z; 1) = 1. (2.4)

t—=0

The function F(t), defined for ¢ € I, where I is the
closed interval [0, 1], is what we want to find in some
way from the knowledge of the function

d
n(z) = ;t In @,(z; t)lt:l -4 k=12--; (2.5)

physical arguments can be used to restrict the class
of the allowable functions F(¢) to those satisfying the
conditions
F1)=0, F(<0, (2.6)
together with those conditions already included in the
definition (2.1),
F0)=1, F(it)>0 for

tel. @)

The function F(r) is then a nonnegative, nonincreasing
function such that, for ¢ € I, F(t) € I. This means that
for any z¢1I, Eq. (2.3) has only one singular but
regular point in the interval I, namely ¢ = 0. From
there we start to integrate the equation with the
regular solution boundary condition, obtaining a well-
defined function ®,(z;t) in the interval I for every
value of z ¢ I. Furthermore, a well-known theorem
states that, if a differential equation depends on a
parameter through a function which is holomorphic
in a domain of the complex plane of that parameter,
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then a solution of that equation, whose boundary
conditions are independent of that parameter, is a
holomorphic function of that parameter in the same
domain. In our case, this theorem says that @(z; ¢)
is a holomorphic function of z in the whole complex
plane excluding the interval 1.

In order to understand what kind of singularities
the function @,(z;t) has for z € I, we note that to
each z € I there corresponds only one point? ¢, such
that F(r,) = z; therefore, ¢, is a singular but regular
point for Eq. (2.3), and from the general theory® we
know that in a neighborhood of ¢, two linearly inde-
pendent solutions exist, one of which is analytic in
t = t, while the other has a logarithmic branch point
at ¢t = ¢t,.* Without going into the details of a proof,
it is intuitive that this branch pointat ¢ =1¢,, in the ¢
dependence, generates for fixed ¢ a logarithmic branch
point in the z plane at z = F(¢,). Since the function
®.(z; t) is obtained by starting the integration of Eq.
(2.3) from t = 0, it follows from the above considera-
tions that the function ®@,(z; ¢) has a cut in the z plane
determined by the condition 0 < ¢, < ¢, that is, for
FB)<z< L

We are now in the position to discuss the analyticity
properties of the function #:(z), defined by Eq. (2.5),
in the complex z plane. In fact, the analyticity proper-
ties of the solution ®y(z; ¢) imply that the function
7x(2) has a cut in the complex z plane for z € I (the
discontinuity being singular at z = 0 as az~%). Exclud-
ing this cut, the function 7,(z) is meromorphic, its
poles being due to the zeros z,, of the function @(z; 1).
Since, for each value of z ¢ I, ®,(z; 1) is analytic and
since there is no value of z ¢ I which can be a zero of
both the function ®(z; 1) and of its derivative @,(z; 1)
[where @,(z; t) is a solution of a second-order differ-
ential equation which is regular at ¢ = 1], there is a
one-to-one correspondence between the poles of the
function #;(z) and the zeros of the function ®(z; 1).
Furthermore, if ®,(z; t) is the regular solution of Eq.
(2.3), then the function ®F(z*;¢) satisfies the same
equation with the same boundary condition (2.4), so
that we have, because of the uniqueness of this
solution,

D (z*; 1) =D (z; 1), z¢l (2.8)

This last equation implies that the poles z, of the

function #;(z) occur as pairs of complex conjugate

values and, more generally, that 7,(z) is a real
function

ni(2) =", z ¢l (2.9)

We now prove that, in fact, the function #,(z) has no

poles, that is to say, that it is holomorphic for z ¢ I.
This result is obtained by showing that the function
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®(z; 1) cannot have zeros when z ¢ I. To establish
this result, we show that the converse leads to a
contradiction. Assume that a value Z ¢ I exists such
that

@, (2;1) =0. (2.10)

This equation, together with definitions (2.1), (2.2),
and (1.2), implies that

¥(®; R) =0, (2.11)
_where @ is such that
flo;r)#0, for 0<r<R, (2.12)

and the function f(w; r) is defined in the Appendix
[see formula (A19)]. We now use the differential
equation (A18), satisfied by ¥'{"’(w; r), to obtain the
equality

i . (*e .. Ll_ 1y, ..
dr(f(a),r)‘l"k (w,r)drll",, (w,r))

4

1{)-(1) ;
ar ¥ (w;7)

2 k2
+ £ 1w, r)Iz)-

r
(2.13)

Integrating the two terms of this equality from r =0
to r = R and using the condition (2.11), we obtain
2 2
+ L voe r)P) dr =0,
R

ff (@; r)(
(2.14)

which, together with Eq. (2.12), requires ¥'{V'(@; r) =
0 for 0 < r < R. This shows that the existence of the
zero {(2.10)] implies

D(z;)=0 for tel,

= flo; r)(

d
__\P'(l) -;
dr % (@;7)

(2.15)

contradicting the condition (2.4) which defines the
solution @(Z; 7). By excluding the cut z € I, the func-
tion #;(z) is then holomorphic; in particular, the point
z = oo is a regular point. In the next section we will
use this property of the function #n(z) to study its
asymptotic behavior for large z and its relationships
with the function F(z).

3. THE HIGH-FREQUENCY EXPANSION

In Sec. 2 we showed that the function #;(z) is regular
when z goes to infinity, which means that the asymp-
totic expansion

(m)_—m

) = 31z (3.1

holds for large |z| or, more precisely, for |z| > 1, if we
consider the smallest circle containing the interval I.
However, it is worthwhile to give a proof of this
asymptotic behavior in which the only requirements
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on the function F(t) are that it, together with its first
and second derivatives, be finite fort e I,

Using standard methods, we consider the integral
equation satisfied by our regular solution ®,(z;1).
We find that the function

FO)—z\}
——~———F(t)__z)xk(z,r> (3.2)

D (z;1) = z"+%(
is the solution of Eq. (2.3) satisfying the condition
(2.4) if the function y,(z; ?) is the solution of the follow-
ing integral equation:

Cn 1 (X 7 (2[xF'(x))
w(z)=1+5 0[1 (t)k](F(x)——z
_XF®PY 1.

[F(X) _ z]2) Xk(zs X) dx, k - I’ 2,

(3.3)

This last equation can be solved by iteration, provided
that |z| is sufficiently large. This means that the
iterative series converges and defines the solution
xx(z; ) for all t € T and |z| greater than a certain finite
value. This shows that the point z = 0 is a regular
point for the function yi(z; ) and therefore for the
function @,(z;¢), as implied by the formula (3.2).
Furthermore, the coefficient of the power z—* of the
asymptotic expansion of the function ®,(z;¢) is
obtained after n iterations, as is evident from the
integral equation (3.3). This last feature is important
because it leads to the possibility of getting explicit
and exact relationships between the high frequency
behavior of the experimental data (1.6) and the
“plasma frequency’’ (A9).

In order to get these results, it is convenient to
introduce the function

Qy(z;) 1
D (z;t) 2

Equations (2.3) and (2.4) imply that the function
Me(z; t) is the solution of the following first-order
nonlinear differential equation:

!() k2
i ..__.=0’
R — ?7( 1) X

(3.5)

Mz ) = 12 [0,z 9] — = (3.4)

nlz; ) + = ["71:(2 OF +

which satisfies the boundary condition
m(z; 0) (3.6)

On the other hand, from the definitions (2.5) and (3.4)
we have

=k, k=12,

m(2) = m(z; 1) 3.7
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so that the experimental data can be obtained by
integrating directly Eq. (3.5), if the “plasma fre-
quency”’ (A9) is known.

Let us consider now the asymptotic expansion of
the function #,(z; t). It is easy to show, for example,
from the zeroth approximation y(z;¢) =1 of Eq.
(3.3) in the formulas (3.2) and (2.5), that

limnlz; )=k, k=1,2,-"-,

lzj— o0

(3.8

bolds independent of ¢ and the function F(r). By
substituting the following asymptotic expansion,
m(z3 1) = k+2n‘""(t)z”"‘, (39

into Eq. (3.5), we get the infinite set of coupled
equations

@Y + k000 = kF'(1) = 0, (3.10)

o1 + = ni”"(t) +1 Zn ")

m—1

= FOZ FOIn"™(0) — kFOIFOI™ =0,

m> 1. (3.11)

Using the boundary conditions implied by Egs. (3.6)
and (3.9),
7™(0) = (3.12)

we obtain, by integrating Eqgs. (3.10) and (3.11), the
following recursion relations:

0, m=1,2,-,

£
() = kt’z"j F'(x)x** dx
0

= kF(t) — 2k % f tF(x)x”’”"l dx, (3.13)
0
0 = [ (kFE
m—1
+FE 3 PO (x)
— _milﬂ(m—l)(x)n(i)(x))xzk dx, m> 1,
(3.14)

which could be solved recursively for any m.

In order to obtain explicit relationships between the
high frequency behavior of the experimental data
71(z) and the unknown function F(x), we have just
to set £ =1 in Egs. (3.13) and (3.14), remembering
that F(1) = 0 {see (2.6)]. We then obtain an infinite
set of integral relations between the function F(x)
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and the doubly indexed quantities

W =g, k=12, m=12""",

(3.15)

that have to be considered as given by the experiment.
As an example, we give the expressions, for m = 1
and m =2,

1
) = —2k2f F()x¥Ydx, k=1,2,""+, o,
0
(3.16)

1 1 2
n® = —-kzj‘ FA(x)x®™dx + 2k3(f F(x)x™1 dx) ,
0 0

k=1,2-,0. (317

Let us consider now the mathematical implications
of such expressions and their possible application to
phenomenology. First, we note that, for the purpose of
reconstructing the function F(t) for ¢ € I, the knowl-
edge of the quantities (3.15), for all the possible values
of k and m, is redundant. This redundancy reflects, in
a certain sense, the existence of the two different
versions of the inverse problem mentioned in Sec. 1.
Namely, the fixed-k and all-frequencies version
corresponds to the use of the asymptotic coefficients
(3.15) at one fixed value of k and form =1,2,- -+,
which determihe the Taylor expansion of the function
7:(2) in a neighborhood of the point z = co. On the
other hand, the knowledge of one asymptotic coeffi-
cient at a fixed value of m for all values of k can be
seen as corresponding to the fixed-frequency and all-k
version of the inverse problem

To prove this redundancy in the coefficients 7™,
we limit ourselves to showing that the function F(f)
related to the coefficients ¥, k=1,2,---, o,
through Egs. (3.16), is unique. In fact, the existence of
two different functions, F;(f) and Fy(t), corresponding
to the same coefficients n{!’, would imply, for the
difference AF(t) = Fy(t) — Fy(t), the vanishing of all
these integrals:

1 1
f AF(®)** 1 dt = } [ AF(/x)x*1dx = 0,
0 J0
k=1,2,-+-, 0. (3.18)
If {P,(x)} is the set of orthonormal polynomials in the
interval I, n being the order of the polynomial

1
f P, (x)P,(x)dx =4,,,, n,m=0,1,2,--+, o0,
0
(3.19)

then the expressions (3.18) imply the vanishing of all
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the Fourier coefficients:

n=201,2,---,00
(3.20)

It remains now to use the theorem which states that
a square-integrable function in the interval I is iden-
tically zero if all its Fourier coefficients corresponding
to the polynomials P,(x) vanish. Then our assertion
follows from the fact that our function AF(/x) is
obviously square integrable. We now go back to the
physical quantities defined.in Sec. 1 and let #, go to
zero for simplicity. Comparing the definitions (2.2),
(2.1), and (2.5) with Eq. (1.6), we get the relation

Uk(C()) = R—lnk(w2/Q§)’ k= 15 23 T (3'21)
which, together with the asymptotic expansion

fan(x)AF (Vx)dx =
(1]

ak(w)———>k oL 4l 5+ 0(1), (3.22)
R W
implies
Q2 Q5
m_ % o) @ _ % ()
o , O , k=12,
% R T R - M

(3.23)

We now use the results (3.16) and (3.17), together
with the definitions (2.1) and (A9), to get all the odd
moments of the electron density function and of its
square, in terms of the asymptotic coefficients oV
and ¢{:

1
— _ % 41 —_ v
J;n(Rx)xz" ‘dx 2k2 aﬁ , k=1,2,-++, o0,
(3.24)
! 2. .2k~1 (1)\2 2 (2)
n(RX)Fx* " dx = — (o}, — o,
[ ewan ) - 2 of
k=1,2,--,0, (325
where
o = mR[4me?, (3.26)

From our previous considerations, we know that the
sequence of numbers of!’ determines completely the
electron density n(r). However, in order to give
explicitly the function n(r) in terms of the coefficients
oV, we have to make some further assumption on the
function n(r). In fact, since the odd moments of a
function f(x) can be considered as all the moments of
the function f(,/x), one could use the formal com-
pleteness of the polynomials P,(x) to write down an
expansion in terms of these polynomials. The coeffici-
ents of this expansion would be obtained easily from
the known moments. However, even if the function
f(x) is analytic in a domain containing the interval
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(0, 1), the expansion in polynomials of the function
f () fails to converge generally forx =0andx =1,
because of the presence of the square root of x.
Then it follows that, with the assumption on the
density

n(Rx) = f(x?), (3.27)

where f(t) is a function whose singularities have a
nonvanishing distance from the interval J, it is possible
to have a convergent expansion of the density func-
tion. To obtain this expansion, we introduce the
explicit expression®®

xel,

P(x) = §0(2n + 1)*(—)"“(’ *}; ”) (';)xl (3.28)

so that the Fourier coefficients of the function (3.27)
are

fP,,(x) f(x) dx

= —a(an + DY 3 R (") (1)l

(3.29)

as implied by Eqgs. (3.27), (3.24), and (2.38). Finally,
we obtain the following representation of the density
function:

n(r) = « 3 (=)™2n + 1}

n=0

x éo (l(—_:%—z(" : 1) (';) ag’lp,,(i;). (3.30)

From our previous considerations on the different
versions of the inverse problem, it follows that the
expression (3.30) is an explicit solution of the fixed-
frequency and all-k version of the problem at the very
special value of the frequency w = co. A different
expression can evidentally be obtained by starting
with the moments of the square of the density given
by Eq. (3.25). This other representation of the
function n(r) could be used to find the relationships
between the asymptotic coefficients o{! and ¢{?’, due
to the expressions (3.24) and (3.25). For example, one
of these relationships can be obtained by setting k = 1
in Eq. (3.25) and using the Parseval equality

-] n (_)l n +l n (1) 2— 2
ngl(zn +1 go {4+ 1)2( n )(l)o‘l+1 TR .
(3.3

We note that the main virtue of these results is that
they explicitly display the relationships between the
electron density and the high frequency behavior of
the experimental data ¢,(w). However, the inverse
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problem for fixed and finite frequency and all values
of k is still an open problem. The discussion of the
other version of the inverse problem, namely for
fixed k, requires a more complete knowledge of the
analyticity properties of the function #,(z) in the
complex z plane than that sketched in Sec. 2. However,
from the results of Sec. 2, we can say that the function
ni(z) is known once its discontinuity on the real
interval {0, 1] is known.

Starting from the experimental knowledge of the
function #,(z) on the real positive axis, one can obtain
its discontinuity, so that the main problem is that of
obtaining the function F(¢) from the singularities of
the function 7;(z) in the z plane. We note that this
problem is completely different from the inverse
problem (all energies and fixed angular momentum)
in potential scattering theory.

We make now a few remarks on the use of our
results from the point of view of an experimental
check and application. Although the applicability of
these results requires the knowledge of the very high
frequency behavior of the function o(w), we want to
emphasize the fact that the function o(w) has actually
a very honest behavior for large w, so that an extrap-
olation procedure could be used to get the asymptotic
coefficients. This remark is important since a limita-
tion on the high-frequency expansion technique
results from the quasistatic assumption (e), made in
Sec. 1. According to that assumption, the frequency w
of the electric potential should be such that

» < 2me/R. (3.32)

This inequality implies that, in order to use a fre-
quency o that is in the holomorphic circle w?/Q2 > 1
of the @ = oo point, the plasma frequency itself must
satisfy the inequality

max Q(r) = Qg < 2mc/R. (3.33)

In ordinary experiments? ¢/R is of the order of
magnitude of 10 sec™, while a dilute plasma has a
density of about 10" particles per cubic meter, which
means a plasma frequency of the order of magnitude
of 107 rad x sec?, so that the inequality (3.33) holds.
For such a plasma! a finite range of frequency w
exists between Q(0) and 27¢c/R such that the mathe-
matical model under discussion is still valid and the
expansion (3.1) is convergent. Therefore, an experi-
mental knowledge of the functions ox(w) in that
region of frequency leads, by extrapolating to the
vanishing value of the variable + = w2, to the
determination of the derivatives of oy(w) with respect
to 7 at the origin. The first derivative of the functions
o (w) with respect to = for vanishing 7 is just what we
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need to write down the representation (3.30) of the
density profile.

Finally, we note that the very simple general
conditions can be read, from Eqs. (3.24) and (3.25),

o <0, o <R, k=12, co.
(3.34)

Furthermore, the expressions (3.24) and (3.25) can be
used to adjust the parameters entering in the density
function. With this aim in mind, we give now a useful
formula obtained in the case that the electron density
is expressed as a superposition of Gaussian functions:

N
n(r) = 3 Ajexp (~ur?), (3.35)

=1
where the 2V real parameters 4, and x, must only
satisfy the relation

N
> A exp (—u,R* = 0. (3.36)
=1

Using Eq. (3.24), we obtain an expression which gives
the asymptotic coefficients ¢\’ in terms of the param-
eters describing the density function (3.33):

K (¥ A
2 28 S
aR !

=1 p

N
_ (k + 1)! llem—k)ﬂz—kAz

k~2

+ (k — 1)!§ol(k —n =2

N
X le—”“-l’,u;"-zAl exp (—Rz,ul)). (3.37)
l=

A similar expression can be obtained for ;2 and
generally for the asymptotic coefficients o{™.

We close this section with two final remarks. The
first one is about the limit of collisionless plasma,
v, — 0, which we took in stating Eq. (3.21). We note
that, because of the definitions (2.1), (3.1), and (3.23),
the representation (3.30) of the density profile is
independent of the limit v, — 0. In other words, the
presence of a nonvanishing collision frequency ¥,
affects the coefficients of the powers w™", in the
asymptotic expansion of the function oyx(w), only for
n 2> 3. The second point is about the presence of a
uniform axial magnetic field. In this case the radial
equation for our function ¥{!(w;r) (see Appendix)
is Eq. (6) of Ref. 2, and it is easy tc check, by applying
our asymptotic expansion method to that equation,
that the representation (3.30) remains unchanged
since again the strength of the magnetic field appears
in the asymptotic coefficients only from the power
w3 on.
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APPENDIX

In this Appendix we derive'? the equation for the
electric potential using the assumptions stated in
Sec. 1.

We start from the continuity equation

Vel OVE O]+ 2 om0 =0, (AD
the Poisson’s equation
VaD(r, t) = 4melp,(x, t) — n(r)], (A2)
and the equation of motion
((V(r, 0 V)V, 1) + %V(r, t)) = V.00,
(A3)

where the electrons are treated as a charged fluid
whose velocity field and density are respectively
V(r, t) and p,(r, t). The ion density »(r) is assumed to
be a time-independent function of the radius r, such
that n(r) = 0 for r > R. The electric field is assumed
to be irrotational [see assumption (e) in Sec. 1] and is
given by —V®(r, t). Finally, m and e are respectively
the mass and the modulus of the charge of the electron.

Introducing the collision frequency constant », in
the equation of motion, we read the linearized equa-
tions as

V- [V 1] + a% o =0,  (Ad)

V2O(r, 1) = dmep(r, 1), (AS)

(ch(r, 0+ v, t)) =4V.0@,1), (A6)
ot m

where we have defined
o(r, £) = p,(r, 1) — n(r). (A7)

A vpartial differential equation for the electric
potential is then obtained by differentiating the
Poisson’s equation (AS) twice with respect to ¢ and
eliminating the density and the velocity field via Eqs.
(A4) and (A6). The resulting equation is

2
v. (V 3P + Q*(n)V + V. %)(D(r, )=0, (A8
where we have introduced the plasma frequency
function

Q¥(r) = 4m(e2/m)n(r). (A9)
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Assuming that the initial conditions, as well as the
boundary conditions, are z independent, we see that
the 0 independence of the function (A9) and the
linearity of Eq. (A8) imply the following radial
equation:

9 0° 0 0
= rl— + Q%r Q. (r, ¢
ar[r(aa=+ P +”aa)] 29
2 2
-5+ 20+ ) =0, @1
or? ot
where the completeness of the functions exp (ik6),

k=0, £1, 42,---, has been used to expand the
solution of Eq. (A8):

O(r, t) = Z D (r, 1) exp (ik0).

k=—o0

(Al1)

We now give an example of external electrical driver
to discuss the boundary conditions. The source of the
electric field is a cylindrical metal pipe, whose radius
is L > R, coaxial to the plasma, which is cut axially
into two halves of angular widths equal to 2« and to
2(m — a) with 0 < o < 3. In the following we will
neglect the gap between the two halves as well as the
corresponding fringing fields. The oscillating electric
potential on the metal surface is fixed to be

(6, t) = exp (iwt)®,, for 6e€(a,n — a),
(0, t) = exp (iwt)d_, for 0¢ (x, m — a),
where ®, and ®_ are constant and w is real.

The boundary conditions for the solution of Eq.
(A8) are

(A12)

DL, 0,1) =D, 1), (A13)

which implies the following condition for the solution
of the radial equation (A10),

Oy (L, 1) = O, exp (iwt), (Al4)

where the constants @, are defined by the expansion
of the function (A12):

®(8, t) = exp (int) Z @, exp (ik0).

k=—c0

(A15)
They are found to be
Q) =3O, + D] — (¢fmA, A=D, —D_,

_ (Al6a)
PO, = —(A/nk) sin ko if k is even,

= (Afimk) cos ke if kis odd.  (Al6b)
To find the general solution of Eq. (A10) satisfying

the initial conditions and the boundary conditions
(A14), we first note that the function

O (r, 1) = Dy exp ((w)¥M(w;r)  (ALT)
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is a solution of Eq. (A10), satisfying condition (A14),
if ‘F}c”(w; r) is the solution of the following equation:

o ( flw, r)-—‘P"”( ,r)) - = flo,N¥P(w;r) =0,

(A18)
flw,r) = r[Q¥r) — & + iwv,], (A19)

satisfying the boundary condition
¥(w; L) =1, (A20)

together with the physical condition'® at the origin

Y w;0)=0, for k0, ¥ w;0) =1.
(A21)
Since Eq. (A18) is regular for 0 < r < L, the solution
¥{V(w; r) is well defined and unique.

It remains to show that solutions ®©(r, ) of Eq.
(A10) exist such that

OL, 1) = 0. (A22)

We can construct the general solution of our problem
by simply adding these solutions to the function (A17).
This spectrum problem can be solved following the
standard techniques used in Ref. 1, and it is easily
proved that the function

®(r, 1)

CulW Y O(r, 1) exp (ipf) dps, (A23)

-

= exp (—#.1)
where Cy(u) is an arbitrary function and

= [Q%(0) — p21E, (A24)

is a general solution of Eq. (A10) satisfying (A22).
This follows from the fact that the functions ¥'{®(r, x)
satisfy the equation

kZ
- e YO, p) =0,
(A25)
(A26)

d d
hadl , ___\IJ‘(O) S )
dr(gw R

g, ) = r[Q%(r) — p* — P,
with the boundary conditions

lim F 0G4y =1,

=0

WL, p) =0, (A27)
and are uniquely defined. By choosing now the func-

tion Ci(p) in order to satisfy the initial condition, we
write the solution of our problem as

01 = exp (— 1) | CUT(r, ) x (i) dos

+ @, exp (i) ¥M(w; r). (A28)
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In this paper we are interested in the steady part of
the solution (A28), that is to say, in the function
Y (w;r).

We end this appendix by noting that the expression
(A28) explicitly shows that the steady part is absent
for those values of k& which correspond to the case
o, =0.
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Research Office, Durham, North Carolina.
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time.!~3 It was therefore believed that, in the com-
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for an asymptotically flat space-time. With Exton,’
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are six Maxwell constants and ten gravitational
constants. These quantities are absolutely conserved;
they retain their values in the presence of outgoing
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In this paper we are interested in the steady part of
the solution (A28), that is to say, in the function
Y (w;r).

We end this appendix by noting that the expression
(A28) explicitly shows that the steady part is absent
for those values of k& which correspond to the case
o, =0.

* This work has been partially supported by the U.S. Army
Research Office, Durham, North Carolina.

1 E. M. Barston, Ann. Phys. (N.Y.) 29, 282 (1964).

2 D. E. Baldwin and D. W. Ignat, Phys. Fluids 12, 697 (1969).

3 D.E. Baldwin and A. N. Kaufman, Phys. Fluids 12, 1526 (1969).

4 The choice of the edge of the plasma cylinder is simply due to
mathematical simplicity and does not lead to any restriction on the
experimental procedure, since our results can be extended to the
case in which the measurements take place far from the plasma by
matching the solutions of the Poisson’s equation and taking into
account the dielectric constant of the quartz container or of any
other medium.

5 For w(w ~— iv,) = Q#0), V(w; r) has a simple pole at the origin
so that the regular and irregular solutions behave there respectively
as r® and 78 where « = 3{{(z + 1)*+ 4k%* — n} and B=
—Hl(n+ 1)2 4+ 4t + n} and n is a nonnegative integer given
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Newman and Penrose® have shown that these
constants (N-P constants) inhibit an initially station-
ary gravitational configuration from emitting gravita-
tional radiation for a period and then returning to an
arbitrary stationary configuration once again. This
result can be understood by considering the axially
symmetric stationary solutions. There are only two
gravitational constants in this case, and they have the
structure

G = MQ — D2,

where M is the mass and Q and D are the quadrupole
and dipole moments, respectively. After a radiative
phase all of these quantities change, but G remains
constant.

Since constants of the motion generate invariant
transformations, the method of study undertaken has
been to look for the transformations generated by the
N-P constants. An initial examination revealed that
they do not generate any type of coordinate trans-
formation and hence are unlike energy and momen-
tum. For the electromagnetic field in Minkowski
space, Goldberg found that the constants generate
a zero change in the field variables at all finite points
of space. This result was to be expected as the constants
themselves are given by 2-dimensional surface integrals
at null infinity.

Further study of linear field equations in Minkowski
space’ showed that these constants are related to the
linear superposition of solutions. An invariant
mapping of solutions onto solutions is obtained by
adding a specific solution of the homogeneous field
equations to all solutions. The particular additional
solution generated by the N-P constants is an in-
coming shock wave in the limit that the wavefront
moves out to future null infinity. Since the shock
wave may have an arbitrary shape, there exist an
infinite number of N-P constants for linear fields.

The important question is how these results carry
over to the nonlinear theory of gravitation. There are
two different approaches:

(a) D. C. Robinson has used the conformal tech-
nique developed by Penrose which allowed him to
calculate “at infinity.”” Robinson extended the results
of Goldberg to curved space and to mappings of
solutions of the field equations themselves.® Using
generalized Hertz potentials (superpotentials) for
zero mass fields, Robinson proved that the Maxwell
N-P constants generate an incoming dipole pulse with
support at future null infinity and the gravitational
constants generate a quadrupole pulse with similar
support and that these pulses are solutions of the
field equations “at infinity.”
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This approach does not develop as much physical
understanding as one would like, since the calculations
are all performed in the unphysical conformal space.
Furthermore, in a curved space-time superpotentials
exist everywhere only for the electromagnetic field;
for other fields superpotentials may exist at infinity in
asymptotically flat space-times. Finally, the gauge
adopted by Robinson for the generalized Hertz
potentials is not conformally invariant, and so it is
extremely difficult to map his calculation back to the
physical space-time in order to develop a physical
interpretation.

This critique leads to the second approach:

(b) The present work obtains the invariant trans-
formations generated by the N-P constants by pro-
ceeding in the physical space-time. By identifying
Noether’s equation with a generalization of Green’s
identity, the invariant transformations are constructed
without using the superpotentials. Thus we can use the
null gauge in electromagnetism and the Bondi-Sachs
coordinate conditions in gravitation. These conditions
are conformally invariant so that, if we chose, the
entire calculation could be taken over to the con-
formal space, where future null infinity is a well-
defined 3-surface.

The result is that, in the absence of an electro-
magnetic field at null infinity, the constants are
obtained directly from the shear of the outgoing
null rays, thus providing a direct link between the
multipole structure of sources, which gives rise to
part of the shear, and the N-P constants. A connec-
tion is thus also obtained with the result of Exton,
who has proven that the gravitational constants
vanish for algebraically special fields.!?

In Sec. 2 a metric and associated null tetrad are
introduced. The Einstein and Maxwell field equations
are to be treated within the Newman-Penrose formal-
ism and the necessary spin coefficient restrictions are
stated. Section 3 extends the Goldberg-Newman
generalization of Green’s identity to any number of
interacting fields whose equations of motion (linear
or nonlinear) are derivable from an action principle.
The relation between constants of the motion and
invariant transformations is discussed, and a connec-
tion is drawn between Noether’s theorem and Green’s
identity. The method of constructing the N-P con-
stants from Green’s identity is then presented. In
Sec. 4 the N-P constants are constructed for the
Maxwell and Einstein fields in an asymptotically flat
Einstein-Maxwell space. The pure gravitational
constants are related to the geometrical behavior of
null rays and in turn to the multipole structure of the



3402

sources. Supertranslation invariance is proven in
Sec. 5, and the nonexistence of higher-order constants
for curved space is discussed in Sec. 6.

2. FORMALISM AND CONVENTIONS

The Bondi-Sachs metric''? defines the asymptoti-
cally flat space-time which is the arena for our
investigation of the N-P constants:

2b
dst = Ye_ du® + 2¢* du dr

r

— PPhy(dx’ — U'du)(dx? — U’ du), (2.1)
where a null coordinate system has been constructed
in the usual manner™?!! with outgoing null hyper-
surfaces labeled by x° = u = const. The rays of
these hypersurfaces (lines with tangent vector u,)
are null geodesics which are parametrized by the
luminosity distance x' = r. Coordinates x* = 6 and
x* = ¢ are constant along each ray. The luminosity
distance is defined by

résin? 0 = gyogss — (g29)°%
and h;; is chosen!? to satisfy (2.2):
e cosh (29) sinh (2¢) sin 0 )
4= (sinh (29)sin @ e cosh (2¢) sin2 6/’
with the result that
J—g = e®risin 0.

2.2)

2.3)

Working in the Newman-Penrose formalism,'? we
construct a tetrad from the Bondi-Sachs metric
which satisfies the completeness relation

g = 2'l(unv) - 2m(uﬁ:’v)
and orthogonality properties
It = —mm =1,

with all other contractions vanishing. From (2.1) the
tetrad vectors are chosen to be

lu = 62’ lu = —2bai‘9

(2.4)

25
n= 8+ 0, w0 =0+ U,

r

2.5

m, = Eiéf, - Ui.fiéﬁ, mb = EWE, (2.6)

where
&= ;‘}_—r___
(I +19)
X [(e7® + ieDe'd? + isin O(e? + ie~?)e 7],

i Tt
R

X ((e“ + ie"Dev8i + _i
si

€+ ie")e"é‘g)
n6

E. N. GLASS AND J. N. GOLDBERG

satisfy
£6=0, &8 =—1,
and
Eigj + giéj = rzhii'

This tetrad is different from those of Newman and
Penrose! and Sachs.? It is chosen so that m* and m*
are surface forming (they lie in 2-surfaces of constant
u and r), and resembles a tetrad used by Hawking!
except that he uses an affine parameter and we use a
luminosity distance.

The spin coefficients (see Appendix B) are restricted
by the relations

k=e=0, r=a&+ f,
p=4pf p=p 2.7
where the propagation of m* along [* is chosen to be!®
mt I’ = #lk,
The tgchnique of Newman and Unti'® is used to
integrate the Newman-Penrose field equations, and
the asymptotic solutions together with the definitions

of the field variables are collected in Appendix B.
Intrinsic tetrad derivatives are defined as

D:=I,, A:=n"V,, 6:=mV,.

3. GREEN’S IDENTITY AND INVARIANT
TRANSFORMATIONS

Goldberg and Newman'’ have constructed a
generalization of Green’s identity which is applicable
to nonlinear differential equations derivable from a
variational principle. The generalization says that if
a system of field equations is derivable from a varia-
tional principle whose Lagrangian density L(y,, y4,,)
is homogeneous of degree n, in the field variables y,
and of degree n, in their first derivatives y, ,, then the
following identity holds:

VM4, 2) ~ (ny + ny— D'z, =1, (3.1)
where z, := 8y, is'® an arbitrary variation of the

field variables and M“(y, z) is the corresponding first
variation of the field equations'®

I :=e¢4L — (3*L),. (3.2)

Actually, the proof given in Ref. 17 treats only the
case n, = 2. Furthermore, the Langranglan density
may be composed additively of parts with different
homogeneity properties as in the case of the Einstein-
Maxwell field. The generalization of the theorem to
include these properties is easily carried out via the
methods of Streudel.2-2! In the following proof we
shall restrict the generality to the case of two interact-
ing fields, which is equivalent to the Einstein-Maxwell
field. The method of proof can clearly be extended to
any number of additive parts.
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Consider a Lagrangian density which consists of two
parts with field variables g, and y4:

L(ga’ Ya ga,u’ yA.u)
= Lo(ga’ ga,u) + Ll(yA’ Ya,us 8as ga,u)’
wherea=1--n,A=1--N,and pu=0,1, 2,3
over the coordinate labels. We assume that L, is
homogeneous of degree n, in g, and n; in g, ,; L, is
homogeneous of degree ny in y 4, nyin y,,,, 15 in g,,
and ngin g, , . Using Euler’s theorem for homogeneous
functions, the definition for the field equations given
in (3.2), and L* = L§ + L%, L* = L?, we get the
identities
gL + (gaaa"L)’“ = (ny + ny)Ly + (n5 + ng)L,,
(3.3a)
V4l + (704L),, = (mg + ny)Ly. (3.3b)
Now form the variation of Eqs. (3.3) and combine
the resulting expressions to give (m:=n, + n, —
N5 — ng)
(1 - nm - n2)sgaLa + gagLa
mng+nyg—1) + (n3 + nd(ns +ng) = 4
- oy L1
(ns + ny)

+ yoOLi=1¢,, 3.9

ny + ny

¢ 1= —58(g,0"L) + (n; + ny)(82,8%L + 8y 0Ly
m

8(y49°Ly). (3.5)

Ry + Ny
Equation (3.4) is the identity we have been working
toward.
For the specific case of the Einstein—-Maxwell field,

Lo = §(28°°81,8p, — 8" Buplsr — 403038,08% 8" ,,
3.6)
where
&= (e, g, =&,
L = —}(—pkg"e” - 878" A, 4,,. (3.7)
For the field variables §** and 4,,, the homogeneity
conditions are n, = —1, n,=2, n3=0, n, =2,
n; = ng = 0,and m = 1. Equation (3.4) now becomes
__g‘IlVS(R“v + Tpv)
+ {4~ P, — 48—,y =1,
(3.9

Introducing the notation z,, := Jg,,, we can write #*
as

= (—g)k(g™g? — 8¢ z,5.,
+ Ho4,(— )P — 4,5[(—g)iF™]). (3.9)
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To obtain (3.9), we have used

6Ruv = (5Puaa);v - (6P£v);p
and
SF;ﬂ = %g‘w(zua;ﬂ + ZuBia
For convenience, in the following discussion
relating Noether’s theorem to the generalized Green
identity, we shall use y , as a generic symbol including
g, and will understand that Eq. (3.1) would have to be
replaced by (3.4) for the more general situation in
which we are actually interested.
Now, if a set of field equations

=0 (3.10)

is derivable from a variational principle with
Lagrangian density L(y4, ¥ 4.,), then, for an invariant
transformation y,— y, + dy,, Noether’s theorem
says that the following identity holds??:23;

Zapin)-

Sy di=r,. (3.11)

That is, when the field equations (3.10) are satisfied,
we have the conservation law

(3.12)

The converse of this statement is also true: If a
relationship of the form (3.11) holds, then dy, is an
invariant transformation.

Equation (3.1), the generalization of Green’s
identity obtained above, arrives at the Noether
equation whenever 8y, =:z, is a solution of the
first variation of the field equations, i.c., whenever
8L4 =: M* = 0. Therefore such z, define infinitesi-
mal invariant transformations. We shall show that
the N-P constants generate a particular class of such
transformations.

The generator of a given invariant transformation
is that constant of the motion defined by the corre-
sponding conservation law (3.12). To obtain the
generator, one integrates the conservation law over
an appropriate 4-dimensional vegion R, and defines
the generator as an integral over a segment of the
boundary of the region. For our purposes it is con-
venient to take R, (see Fig. 1) as that region bounded
by two outgoing null surfaces N’; and N, and two
surfaces X, and X, which may be timelike or null. X,
is to be taken eventually to future null infinity. It is
convenient to take X, to a surface v = u 4 2r =
const, which in fact becomes null in the limit of
future null infinity. The surface %, in principle need
only bound R, away from any sources. We take it to
be an r = const surface.

From Stokes’ theorem, an integral over the
conservation law (3.12) gives an integral over the

,=0.
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FiG. 1. Region of integration.

boundary of R,, which we write

t’l, d ——f ¥l,d
J:N’; p 4T (3) N, p 47 (3)
- —ft" ds, +f #dS,. (3.13)
Zg Iy

If the integrals over X, and X, can be shown to vanish,
then

G[z] :=J;\Pt"’l,J dr

is a constant of the motion.

In flat space a solution of the wave equation can be
found which is sharply confined between two null
surfaces. One can choose the surfaces to be incoming
null cones between X, and X,, and, indeed, we can
choose the solution to have a delta-function shape
(see Fig. 2). Clearly, by choosing z4 # 0 only on an
incoming cone so defined, we make the right-hand
side of (3.13) vanish and thus define constants of the
motion. If the support for the incoming shock wave is
taken in the limit of future null infinity, the constants
so defined, when they exist, are the N-P constants.
Of course, to carry out this limit, the £, boundary
must itself be taken out to future null infinity.

(3.14)

future
null infinity

2

ncoming shock wave
FiG. 2. Support of the incoming wave.
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Therefore, for the remainder of the paper, the region
of integration will be defined with X, at future null
infinity.

In the following sections, we show that to a limited
extent something similar can be done in asymptotically
flat space-time. In particular, since a discontinuity in
the electromagnetic or gravitational field can appear
across a null surface, one can always choose z, to be
zero on the inside of the surface of discontinuity. In
this case, the contribution from the X, flux integral
will always vanish. The problem then is to investigate
the falloff of the field on the Z, side of the surface of
discontinuity. If the falloff is sufficiently fast, the
integral on the left-hand side of (3.13) may have a
finite limit when the shock front moves out to future
null infinity, while the X, integral goes to zero. We
shall see that this is indeed the case for a dipole shock
wave for the Maxwell field and for a quadrupole
shock wave for the gravitational field.

4. N-P CONSTANTS IN EINSTEIN-MAXWELL
SPACE

One can generate transformations by initiating the
variation of the degrees of freedom of the electro-
magnetic and gravitational fields separately. When
this is done, certain combinations of the field quan-
tities will remain constant. That the electromagnetic
constants are different from the gravitational ones
seems natural when we recall that the degrees of
freedom of the two fields are independent. This is
made particularly clear by remembering that the
lowest order of electromagnetic radiation is dipole in
character, whereas for the gravitational case it is
quadrupole. Therefore, one might expect that con-
stants associated with an electromagnetic dipole field
would not couple strongly with the gravitational field,
whereas the gravitational quadrupole field might
couple strongly with the electromagnetic field. As a
result, the N-P Maxwell constants would not be
altered by the presence of the gravitational field, while
the gravitational constants would be modified by the
presence of an electromagnetic field. We shall see that
this is indeed the case.

The Maxwell and Einstein fields are determined by
the coupled nonlinear field equations

F(-_)”'V.v =0,
=) +)
R,, = —2F9 fFH

uv

4.1)

together with asymptotic conditions which restrict the
system to asymptotically flat space-time, and where?

FW o= J(F™ & inf™F,,).

The asymptotic solutions of Eqs. (4.1) are collected in
Appendix B. Here we shall also need the physical
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components of the vector potential 4*:
At =1 A" + A" 4 Am* + A, (4.2)

where A, and A4, are real and 4, = 4,. The most
convenient gauge in which to proceed is a null or
“Bondi” type gauge:

A, = A, =0 (4.3)
(a conformally invariant choice). From (B24), (B25),

and (B26), we obtain the following asymptotic
forms?:

A0=A8—3r(¢?+$?)+02,
A0 1
A —_+:(¢0_0 0) (44)

+ z—rg(#, — o*$y + 0°5°43) + 0Oy,

AY = —(@®'¢) + 57'¢Y)

343 = ¢}.
From Eq. (3.9) of the previous section, we have the
conserved vector density

0 = A—g)g gtz ., — 44, FH8(—g)t
+ ¥~k — 4,8F*). (4.5)

z,, satisfies the equation §(R,, + T,,) = 0, and 4,
and 8F,, satisfy §(F»*,)) = 0.

For our needs the solutions of the varied equations
fall into two cases. To explain what they mean, we shall
briefly consider the flat space N-P constants for the
electromagnetic field. In flat space, there exists an
infinite number of constants given by

F, = §1Yl,m¢éd9, =123, -I<m<],
where ¢ is defined by the asymptotic expansion
¢ ¢0 + ¢0 + ¢0 + -

Robinson has shown that these constants generate
incoming multipole pulses which are exact solutions
of Maxwell’s equations in Minkowski space. Newman
and Penrose found the first member of this infinite set,
I =1, to be constant also in curved space. Therefore,
we are led to seek a solution JF,, which has the leading
behavior of an incoming dipole wave. The behavior
of z,, is then driven by this requirement.

To construct the constants related to the gravita-
tional field, we similarly must look for z,, whose
leading behavior is an incoming quadrupole pulse.
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8F,, is then driven by this requirement. Below, we
treat these two possibilities separately.

A. Maxwell N-P Constants
The first variation of the Maxwell equations (see
Appendix B for the definitions. of all tetrad compo-
nents and spin coefficients which appear in these
equations) are solved by an iterative procedure. First,
one starts with 8¢, as an incoming dipole shock wave
(see Appendix C):

8y = 1 Y1, 02 B™(v)/r],
where

v=u+2r.

The “radial” equations allow all other pertinent
quantities to be determined. The “nonradial” equa-
tion permits corrections to the ansatz to be calculated.
One can then start again with a corrected &¢,.
Fortunately, we do not have to go beyond the first
correction, as we are interested only in asymptotic
solutions in an asymptotically flat space-time.

The propagation equation for J¢, shows the
correction terms fall off in powers of 1/r; thus?

8o = 1Y1,maf[Bm(”)/ 11+ 0;. (4.6)
Here 07(B]r) is taken to be a term of asymptotic order
1/r3. This is to be understood by taking the convolu-
tion of 9(B/r) with a test function (a function of r
alone) and considering B(v) to be O(1). In this way
0, B(v) = O, for all n required. In particular, we shall
take B(v) to be an incoming shock wave with a delta-
function radial profile,

B™(v) = a™RsS(u + 2r — 2R), @.7)

where R is a radial parameter which defines the
location of the shock wave and the a™ are complex
numerical coefficients. (It should be noted here that
v = u + 2r is not an incoming null surface in curved
space, and discontinuities in the field occur only across
true characteristic surfaces. However, in asymptoti-
cally flat space, as one approaches future null infinity,
u + 2r does become an incoming null surface with
the curvature terms falling off in powers of 1/r. This
behavior is sufficient for our purposes.)

With 8¢, above, the varied field components are
found to be

5y = oY, (ﬁm) + .Y, 05 L a( )+os,

B™ 95° 1. (B™
5¢2 = —lYI.m 3 J 1Y1,,,,,_a,.(-—)
r a r r
~0 X =0 1 B™
- 0},1,,"(80' ) 4 + 11,1',,”(660' ) ;;af —;—

1Y1m_0’1"a (B ) + Os
r?

4.3
2r (48)
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and

.. _B™
ng = (OYI,m + OYl,m) 7‘

> = o B™
P 59 $0) ——
(IYI,msa + 1 Yl.mba ) r3 + 04 s (4.9)

B™ - B”
SAS = _IYI,mrar(?) - aolyl,m —r; + 045

84, = 84,.

As anticipated in the introductory paragraphs of
this section, we find that the gravitational effects
first appear in order Oj in the spin coefficients. This
order is too far down in 1/r to make a contribution to
the conserved quantity defined by Eq. (3.14) with the
transformation characterized by (4.6). Therefore, we
need only be concerned with the wholly electro-
magnetic portion of ¢# which can be written

0, = - (F*54, — A,5F*).  (4.10)
Now inserting Eqs. (4.6)-(4.9) into (4.10), one easily
shows that the flux integrals on the right-hand side of

(3.13) vanish in the limit of R — + co. The constants
F,, are given by

F,, = lim L (A30Ps — $o8A4,)e®*r? sin 6 dr dO d o,
R~ JN

F,= fﬁ Yondbsin 0 d6 d. @.11)

B. Gravitational N-P Constants

To obtain the gravitational constants, we start with
the ansatz taken from Appendix C:

90 = o Yo, 07 [B"(0)/r], (4.12)

with B™(v) = a™R%(u + 2r — 2R). By the iterative
process described in connection with the search for
the Maxwell constants, we develop an asymptotic
infinitesimal solution. In principle, we require this
solution for both the Maxwell field and for the
gravitational field. There is, however, a trick by which
we can avoid evaluating the varied (infinitesimal)
Maxwell field.

In the conserved vector density 7, there is a purely
gravitational part and a mixed part which contains
the metric tensor as well as the electromagnetic field:

t(pg) = (_g)%2ga[agﬂ]pzaﬂ;a’
0 = d(— ) F™84, — 4,5(~g) F")]. (4.13)
One can show easily that

t(,:l.e).p = _g»,ung’”’ (414)
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when the Maxwell equations and their first variation
are presumed satisfied. From the fact that the trace of
the Maxwell stress—energy tensor vanishes, the right-
hand side of (4.14) can be wholly expressed in terms of
the varied metric and the original (unvaried) metric
and Maxwell fields:

o, = Todg" = ~(—g)z,, T,  (4.15)
where z,, is defined following Eq. (3.8). There-

fore, the quantity to be integrated over the 4-dimen-
sional volume illustrated in Fig. 1 is

., — (=2, T" = 0. (4.16)
We shall have to show that the 4-dimensional integral
over z,, 7"’ becomes just a 2-dimensional surface
integral in the limit R — oo, with the solution deter-
mined by (4.12).
2,y i expressed in terms of the null tetrad given in
Sec. 2:
Zuy = (1) (V)L L, + 4(8b)],n,,
+ 288U umyy + 288U 7,
— 28,(0&m m, — 2E(8EYym,m,. (4.17)
The six functions &b, 6&¢, §Ut, and 8V are determined
from the first variation of the Newman-Penrose
equations (4.2), (4.4), and (4.5) of Ref. 11. These
equations are solved by the iterative procedure.
With oy, given in (4.12), the infinitesimal metric
components are found to be

Sb = %((702?2'"‘ + 502}'2,,”)3,-[;1: ar(%n)] + 05,

(4.18a)
88t = (5“’2Y2,m)ra,[% a,(?;—” + 0, (4.18b)

- . — - B™
6Uz - —2(5‘062}’2"" + 5‘06 2Y2,m)a,. (—r';) + 05,
(4.18¢)
8V =25%,Y,,, + ’8221@_,,,)_(3—2) +0;. (4.18d)
¥

It turns out that only the leading terms of the infinites-
imal metric components are necessary for the calcula-
tion if one chooses r to be the luminosity distance.
When the same calculation is performed with » an
affine parameter; additional asymptotic orders must
be computed for each component of z,, := 8g,,. The
advantage of choosing r the luminosity distance is that
a large number of terms are gathered together in the
factor ¢® which otherwise appear in the metric of the
2-space u = const, r = const. This simplifies the ap-
pearance of the equations, as well as their solution.

Now we are in a position to examine z,,T#*; T*" is
taken from (B37), and z,,, is given in (4.17) and (4.18).
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Therefore, after some manipulation and use of the
field equations, we obtain (X, are expressions of spin
weight s whose exact form is not needed)

( - g)ézuvT“v

= —2sin e(a,x., + li—f,"—)(ﬁx_l +3X: + 4,5, ,.5)
r

+ c.c. + 0,), 4.19)
where?”

S=F5Y ¢ — E) — ¢ (s — F) (4.20)
and

1
F:= Y Fp Y1, E:=8yY,.
m=—1
In the course of the integration over R,, the two terms
involving the differential operators 8 and & vanish by
Eq. (A9). X, is linear in B(v) [see Eq. (4.12)] and hence
has no support on the boundaries X, and X, of Fig. 2.
Therefore,

f (— g)%z,wT‘"’d"x
Ry

Ng— Ny

Clearly the delta function in S will give us just a 2-
dimensional surface integral in the limit R — co.

Going back to (4.16) and treating the divergence
term as in Eq. (3.13), we find

sz-m #1, dr d6 dé

=2 2r8b + rcfdE + 4,7, . S
fM_Nl[r +r’obdf + 4,1

+ c.c. + 0,])sin 0 dr d6 d¢.

Again the residual flux integrals over Z, vanish in
the limit, and we obtain the constants of the motion

G, = jG o Tam(yh + 4S)sin 0 d6 dg.  (4.21)

In the absence of the electromagnetic field, S = 0 and
we have simply

G, = § JTonybsin0dod.  (4.22)
From Eq. (B5) we find that v} can be expressed in
terms of the rate of shear ¢ as

vy = —r0,r*d,r'c

(4.23)
and therefore

G, = —lim
=

2 Yg nr0,r%0,r%0 sin 6 d dp. (4.24)
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This way of writing the constants is very suggestive.
First of all, it shows clearly that the N-P constants
are independent of the outgoing news which is defined
by ¢°. Furthermore, since the shear is determined by
the distribution of matter, one imagines that the con-
stants should be intimately related to the multipole
structure in the infinite past. This interpretation is
further supported by examining the static Weyl-Levi-
Civita solution (translated into outgoing null coordi-
nates by Bondi et all). This solution has one real
N-P constant

Gy = MQ — D?, (4.25)

where M, D, and Q are the real mass, dipole, and
quadrupole moments. The shear of this exact solution
(withg = U% = 0)2 is

o= —e 2%,y
_d'(® + 3Qsin6  Ssin® 6
TR 2r! r

X [(T — M?D)cos 6 + (MQ — D¥] + O,
where T is the octupole moment. A BMS “frame”
exists?® in which ¢® can be transformed to zero by a
supertranslation [i.e., 0°(8) = §2«(6)]. With o® trans-
formed away, it is clear that the shear arises solely
from the structure of the sources.

One would have hoped that even when S # 0, the
N-P constants G,, could be related to the geometrical
behavior of null rays in the combined gravitational
and electromagnetic fields. Unfortunately, the Max-
well field modifies the rate of shear only in a higher
order than is selected in Eq. (4.23). We have not yet
been able to identify the N-P constants of the com-
bined fields with the geometry alone.

5. SUPERTRANSLATION INVARIANCE

The symmetry group of the asymptotically flat
space-time under consideration is the Bondi-Metzner-
Sachs (BMS) group (pseudogroup). This set of
transformations preserves the Bondi-Sachs metric and
the asymptotic boundary conditions. The transforma-
tions are the conformal transformation of the (0, ¢)-
sphere into itself with conformal factor X and the
transformation of one system of null hypersurfaces,
u = const, into another by

u' = K0, $)[u + «(9, $)1,

where « is an arbitrary real function on the sphere.
The BMS transformations with (6', ¢') = (0, §) are
the supertranslations ¥’ = u 4 «. (Sachs®® has shown
that the supertranslations are an invariant Abelian
subgroup of the BMS group with a factor group iso-
morphic to the orthochronous homogeneous Lorentz
group L!.)
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Penrose, working in conformal space, proved that
the N-P constants are supertranslation invariant.®
Our calculation provides a simple proof in the physical
space~time. The N-P constants are obtained from an
expression of the form

fRAt”,pd‘x =J‘J\‘Pz_‘!\mt"’l‘,J drdf dé + flux =0,

where in the limit of future null infinity the flux
vanishes. Suppose N’; does not belong to the same
coordinate system as N’y (i.e.,, N, is a u’ = const
surface, N’; a u = const surface). Their coordinates
will be connected by a BMS transformation. If N, is
a u' = u— af, ¢) = const surface, the normal to
Ny, [, =u,, will be a null vector up to terms of
order 1/r? (i.e., [}l'? = — 2r=2{Ba|® + O;). The proof
is completed by noting that ¢°/] is nonzero only at
future null infinity where /, —/,.

Under a conformal transformation of the (0, ¢)
sphere, I, is unchanged, but the angular part of the
incoming quadrupole perturbation transforms as a
D(2, 0) representation of L] . Thus, in the limit of
future null infinity, the N-P constants transform as a
D(2, 0) representation of L{ and are unchanged by
supertranslations.

6. HIGHER-ORDER CONSTANTS IN
CURVED SPACE

Since there are an infinite number of N-P constants
in flat space with only the leading members of this
infinite set discovered to be constant in curved space,
it is natural to look for higher-order constants or
determine why they do not exist. The Green’s theorem
technique is used to search for the generators of
higher-order incoming perturbations. In particular, we
will examine the Maxwell field for generators of an
incoming quadrupole perturbation.

The Maxwell equations for the incoming perturba-
tion will be solved by the iterative method of Sec. 4.
Again, the results of the flat-space theory guide us in
choosing a trial solution. In flat space the N-P
constants F2 = §,Y, ,$3dQ generate an incoming
quadrupole pulse. Thus, the trial solution will be an
exact flat—space incoming quadrupole wave plus
correction term. The flat-space solution is obtained
from Appendix C:

SAo = (oYa,m + oyz,m)rzar(Bm/ "4);

4, = —@)F Y, 0B ), (6.1)
gAz e 514—3,
5o = M 1Y, rO(B™r),

8¢y = oYs 3B (1),
8o = (3)F _ Yy, 10, (B™/rY.

(6.2)
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To see how far to carry the process of iteration, we
first examine the integrand of the null surface integral.
From (4.10),

(—g)tt°l, = e¥r?sin 6(A08, — ¢odAs) + c.c. (6.3)

It turns out that terms of 84, with curvature correc-
tions through O; and terms of 34, through O, con-
tribute. These are calculated from the field equations

(A + p — 2y)8¢y = (8 — 2104, + 0d¢,
and

¢y = —(D — p)d, + 084,

by substituting (6.1) and (6.2) and using the iterative
technique to obtain the corrections.
Equation (6.3) becomes

(_g)%tplp = ar[XO]
+ 5 m(") (242 — 0P8 T + ]
+ O7 + c.c., (6.4)

where - -+ abbreviates several more terms involving
curvature quantities. The result in (6.4) fixes the weight
of the parameter R to be R®. Thus B(v) is chosen as

B™(v) := a™R%(u + 2r — 2R). (6.5)

Now it is possible to determine if the terms in the
flux fall off rapidly enough for it to vanish. From
(4.10) the flux integrand is (recall that n,, is the normal
to X, at future null infinity)

(-—g)‘}t"n,, = ¢*'r? sin O($,0A4; + $,04,
~ Ay8¢, — A, + c.c.
Using one of Maxwell’s equations
(D - P)5¢2 =+ 277')5951 - 25‘#0
and one of the Og correction terms of 8¢,
03, Y, .+ 108 B™r),

we can examine part of the tail of §¢,. Its r depend-

ence is
r Jo X X

with B(v) given in (6.5). Performing the integration,
one obtains 6(r — R)/r, where 0 is the unit step func-
tion. Examining the third term of the flux integrand

e*’r? sin 04,0¢,,

)

+ -
x( Qa_ _00(r—R) )

r

(6.6)

we find

€*’r? sin 0(
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It is clear that this tail term (among others) leaves a
contribution in the flux integral. Hence the result of
using Green’s identity here is that, at future null
infinity,

§ [(2¢2 — 0°%°¢Y) 1 ¥y, + - - ]1sin 0 db dg
= nonzero flux.

This same analysis holds true in the gravitational
case as well. Thus, it is clear that the nonexistence of
higher-order N-P constants is due to the dispersion
of the space-time curvature. For the higher-order
incoming pulses, the curvature produces wavetails
which fall off too slowly for further constants to
exist. Physically, this result can be understood as
follows: The lowest incoming multipole perturbations,
both for electrodynamics and gravitation, are exact
solutions of the field equations at future null infinity.
This is no longer true for the higher multipole solu-
tions. For, in that case, the correction terms (wave-
tails) interfere with the linearized multipole fields even
at future null infinity.

7. SUMMARY

The aim of this research has been to investigate the
N-P constants and their associated symmetries. The
initial work of Goldberg and Robinson has been
supported and extended.

Of the infinite set of flat space N-P constants, only
the first members are preserved as constants in
curved space. The invariant transformations which
they generate have been found to be incoming
multipole waves (dipole for the electromagnetic con-
stants, quadrupole for the gravitational constants)
with support restricted to future null infinity. The
nonexistence of higher-order constants has been
discussed, and the invariant transformations they
would have generated have been examined. Higher
multipole wave perturbations have been obtained
from the infinitesimal form of the field equations by
an iteration process. The incoming higher multipole
pulses are found to have correction terms (added
to the exact flat-space solutions) which are wavetails
that fall off too slowly for their contribution in the
flux to vanish at future null infinity. Thus the space-
time curvature is seen to allow only the lowest
multipole incoming perturbations as invariant trans-
formations generated by constants.

The Goldberg-Newman generalization of Green’s
identity has been used to obtain the Maxwell and
Einstein~-Maxwell N-P constants, and the invariant
transformations they generate have been identified by

3409

comparing the generalized Green’s identity and Noe-
ther’s equation. The pure gravitational constants
have been obtained from the shear of the outgoing
null geodesics. This shows a close connection between
the constants and physical sources, since part of the
shear arises from the multipole structure of sources.
Indeed, the presence of mass is always signaled by the
shear of the surrounding null hypersurfaces. Even a
Schwarzschild mass, unless viewed from a preferred
frame, is to be observed via a shearing null congruence.
It is when the preferred shear-free congruences exist
that the N-P constants vanish. Let us stress that we
find it unsatisfactory that a simple geometrical explana-
tion has been obtained only for the pure gravitational
field and not for the combined Einstein-Maxwell
fields.

A null gauge has been used in the electromagnetic
calculations, and Bondi-Sachs coordinate conditions
adopted for gravitation. These algebraic, rather than
differential, gauges are conformally invariant and
allow the entire presentation to be taken over intact
to Penrose’s unphysical conformal space. Only in the
conformal space is the limit of future null infinity a
well-defined geometric object, and the arguments in
this paper can be made rigorous by taking them over
to the conformal space.

The supertranslation invariance of the constants
has been obtained by examining the calculation over
null surfaces belonging to different coordinate systems.
The BMS transformation between the different sur-
faces leads directly to the supertranslation invariance
of the constants.

No additional understanding of the selection rules
imposed by the constants on radiative processes has
been gained in these studies, and this topic along with
an investigation of the effect of modifying the space-
time boundary conditions requires further investiga-
tion for deeper insight into the N-P constants.

APPENDIX A: THE DIFFERENTIAL OPERATOR
3 AND SPIN-S SPHERICAL HARMONICS

Here we will list the properties of § and the spin-s
spherical harmonics ,Y, ,, , which were introduced by
Newman and Penrose.?8-30-32

Let the real and imaginary parts of the complex null
vector field m* be spacelike vectors in the tangent
plane of the sphere. Under a rotation of these vectors
through the angle v, the complex vector transforms as

(A1)

A function defined on the sphere is said to have spin
weight s if, under the above rotation,

m'* = e¥m*.

n—>n' ="y (A2)
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The operator 5(3) raises (lowers) by one the spin
weight of a function # with definite spin weight 5. In
general, 5 can be integral or half-integral. For s an
integer, the ,Y, , can be related to the ordinary
spherical harmonics by®?

FYim 1= [ = )Y + DIPCWYY,,, 0<s<],
= (=1y[(! + )Y = HBB)~Y, ,,,
—1<s<0. (A3)

For each value of s, the ,Y; ,, form a complete ortho-
normal set of functions on the sphere:

55 Ty TomdQ = 8y, (Ad)

where d(Q is the spherical area element. The following
properties are easily verified:
Vim= (=)™ _ Y,
28,7, =[0— )0+ s+ DF 1 ¥om,
18,7, =—[(+s)0 =5+ DE, Y,
Hence

(255 + 285 — 59 Y, ,, = =0+ 1),Y; ..

(A5)

(A6)

(A7)
The commutation properties of 8 and J are given by
(B8 — 88)y = s1. (A8)

As a consequence of (A6), & annihilates ,Y,,,
while 8 annihilates ,Y,,,. One further important
property is that if « and B have spin weights one and
minus one, respectively, then

ffz‘sa iQ = §6ﬁdQ =0. (A9)

If the quantity = is defined as a solution of the

differential equation

37 =1, (A10)

where 7 has spin weight s, then 7 exists and has spin
weight s + 1 if (a) n has spin weight 5 < 0 or if (b)
# has spin weight s > 0 and §,Y,,7dQ =0 (ie.,
7 does not possess its lowest possible /).

When T exists, it can be written® as

=871y (All)

Finally, note that if the usual spherical angles (6, ¢)
are introduced on the sphere, then & acting on a
spin-s function has the representation

5y 1= —

— (sin 0)'( + —_— ——) [(sin 6)~*n1,

n 624
(A122)

J
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and similarly

= d
6 == - — | — — ——— 3.

77 \/2 (sin 6) (60 0 aqs) [(sin 6)°4].

(A12b)
With
. 1 w1 i
= —— 6 d
©=Tgpett md \/2( sin e)

the leading term of the differential operator 6 + 2sa
is —8 when acting on a quantity of spin weight s.
That is,

(8° + 2500y = —87, (A13)

and similarly

(8° — 25a%n = =By, (Al14)

where # has spin weight s.

APPENDIX B: ASYMPTOTIC SOLUTIONS
OF THE FIELD EQUATIONS

Asymptotic solutions of the Einstein-Maxwell field
equations have been obtained subject to the conditions
that space-time be asymptotically flat and that the
Maxwell fields vanish asymptotically. In Ref. 11 it is
demonstrated that, for the vacuum field equations, a
very weak condition which insures the asymptotic
flatness of space-time is ¥, = O(1/r®) (along with
certain smoothness conditions). Similarly one can
show that the condition for the flat-space Maxwell
field to vanish asymptotically is ¢, = O(1/r®). For
the combined Einstein-Maxwell field, Kozarzewski®
has shown that the combined assumptions imply the
asymptotic flatness of space-time and the asymptotic
vanishing of the Maxwell field. The asymptotic order
of the spin coefficients is the same for both the vacuum
field and the Einstein-Maxwell field.

To obtain the asymptotic solutions using our
choice of tetrad, we followed the techniques of
Newman and Unti.!® First, one integrates the *“‘radial”
equations to obtain the asymptotic r dependence of
the solution on a given u = const hypersurface.
This solution will contain “constants’” of integration
(actually functions of 6, ¢ on a given null hyper-
surface). The “nonradial” field equations will deter-
mine the propagation of the solution off the given
hypersurface and relate the “constants’ of integration
to the initial data. The method is straightforward, and
so here we list some definitions and then give the
asymptotic solutions.

The twelve complex spin coefficients (linear
combinations of the Ricci rotation coefficients) are



NEWMAN-PENROSE CONSTANTS

defined below:
k:=m"Dl,, e€:=}n"DIl, — m"Dm,),
m = —m'Dn,,
pi=mdl,, o:i=}(n"sl, — m“ém"),
A= —m"sn,,
u : u . (BD)
o :=m"dl,, B:=¥n"dl, —m"om,),
u = —m'on,,
7:=m'Al,, y :=3}(n"Al, — m"Am),
v = —m"An,.
The Weyl tensor components are the five complex
scalars
Yo 1= —Cpppel*m’'Pm°
1 i= —Cpppel” n”l"m
Yo 1= —Cpppem'n’lPm’, (B2)
Ys 1= —Cpype*n’ln’,
Yy 1= —Cp ' n"mn’.

The Ricci tensor components are the four real and
three complex scalars

Dy = 600 = _%Ruvl“lv,
o, = <T)'11 1= —iR,(In” + m*m"),
Dy, = 622 1= —§R,,n"n’,
A= A:=R, (B3)
Oy = Dy 1= —3R,I'm’,
Dy = Dy := —3R, m*m’,
O,=0, := —iR, n*m’.

The Maxwell field components are the three complex
scalars

¢ := F,l'm’,
by = $F,(Fn" — m*m’),
¢o 1= F,,m"n".

We present below the asymptotic solutions of the

N-P field equations. Abbreviating O(1/r") by O, ,we
see that the spin coefficients are

(B4)

og=0"%"%— yor — %1/)1 =5+ O, (B5)
p=—r"'— 3" + 0, (B6)
= —(B")r + [$5(c°5°) — v} + 26°56°[F + O,
(B7)
7= —@B&)r 2 + [8(c°5°) — F + 256" + 0,,
(B®)
o = o’ + (&%° — 55" r?
+ 3[o%6°3° + 25°86° + B(c°3") — U + 0,,
(B9)
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where
o = — % cot 6,
/3 = —g% ! — aoo.or-z
— 3@%°3° — 26°%6° + })r® + 0,, (B10)
0 03° oa°
= —11 — _( + =022
# : 2 d au 4 Ju
+ 93 + 75 + 8%° + 526°) 24 0,, (Bl1)
95° ~1 o0 =0y —2
z—a—r + 3(3° — 28555°r 7% + 0,, (B12)
u
y = —(3yl + &% — a®Be%r? + 0y, (B13)
06 90°
= -8l =+~ + +'°)]‘2+0.
’ 2[(814 AP R
(B14)

The metric components are the following:

Ei — é-ior—l _ 0,051'0’,-2 + %0’0&05“)7‘_3 + 04’ (BIS)
where
0 _ i
¢ \/2( sin 0)
—"+( a + 7 a_o"+’¢2+’102)+01,
ou du
(B16)
Ut = (§%0° + £°86")r
+ H[E0@y? — 35(c"5°) — 126°55°)
+cc]r®+0,, (B17)
b= —1"3"r % + 5[2(6°3°) + o5 + ¢
— 2¢edolr ™ + 05. (BLB)
The Weyl tensor components are
= wor° + yr* + 0, (B19)
vo=yirt 4+ (5% + 340dDr™" + 05, (B20)
ve = 9or + Ov) + 24180 + 05, (B21)
¥s = yor~ + Byh + S20r° + 0,, (B22)
pe = 9™ + @pdri+ 0 (B23)
The Maxwell field components are
$o = dor® + yr* + 05, (B24)
b= 7 + B + 0, (B25)
$o = Ut + B$Dr2 + 0;. (B26)
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Finally, we have the further equations involving u
derivatives:

¥) — 73 =0%° — 5%° + a"%‘;—o - o"%’;—o, (B27)
=" %%0 , (B28)

2-0
n=-2%, (B29)
Ouyy + By) — 30%y; — 3didy =0,  (B30)
uy} + By} — 20"y — 2414, =0,  (B31)

B.vs + BBy} — 4o’y

+ 4(FBdy — 20°$1H) — S =0, (B32)
Buy} + Byl — o'yl — dafa =0,  (B33)
0,45 + 5 — o2 =0,  (B34)
dudy + BB, — 20°¢) =0,  (B3S)

0,¢4% + 8¢5 = 0.

For purposes of reference, we include the tetrad form
of the Maxwell stress—energy tensor:

T = 4”2‘%2”‘1v + ¢o$o"""v
+ Godam'm” + oy’
- 29;1‘1521(“'"” - 2¢1$2l(""_1v’
- 2&0‘#‘1"‘"”‘” - 2¢o‘$1"("'71")
+ 2¢,&,(1%n" + m*m").

APPENDIX C: EXACT MULTIPOLE SOLUTIONS
IN FLAT SPACE

The exact flat-space multipole solutions are well
known both for the Maxwell field and the linearized
Weyl field. For the convenience of the reader we List
the advanced solutions in terms of the coordinates and
notation of this paper. The incoming solutions are
given in terms of an arbitrary function B = B(v)
whose argument is constant on the past null cones
v = u + 2r. Specifying the function is equivalent to
giving the incoming news.

The Maxwell components are

(B36)

(B37

3 im
o = (1(1 i 1)) Y07 (BT‘) b
im
b= =2 (55), (€
I+ D\ B'"
b= () 2 (55), ©

‘where I > 1and —I<m < +1
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The advanced Weyl tensor components are

im
S R AR (5:) (C4)
r
9 Bl’m
P = Ky 1, 2001 (—) (C5)
r
_ Blm
Yo = oY, 70! (;;—) (C6)
P Bl’m
vs=K_ 1Y, r 0, ("'sz ’ (%))
Blm
wa = K_g ¥, bt 002 (7(;), (C8)
r
where
K, = [2( - plId + p1T*
and
1>2, =1<m< +1.
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partly on the first author’s doctoral dissertation at Syracuse
University.

t National Academy of Sciences Postdoctoral Resident Research
Associate. Present address: Aerospace Research Laboratories,
Wright-Patterson Air Force Base, Ohio 45433.

1 H. Bondi, M. van der Burg, and A. Metzner, Proc. Roy. Soc.
(London) A269, 21 (1962).

2 R. K. Sachs, Proc. Roy. Soc. (London) A270, 103 (1962).

3 E. T. Newman and T. W. J. Unti, J. Math. Phys. 6, 1806 (1965).
( 4 E) T. Newman and R. Penrose, Phys. Rev. Letters 15, 231

1965).

5 A. Exton, E. T. Newman, and R. Penrose, J. Math. Phys. 10,
1566 (1969).

8 J. N. Goldberg, J. Math. Phys. 8, 2161 (1967).

7 J. N. Goldberg, J. Math. Phys. 9, 674 (1968).

8 D. C. Robinson, J. Math. Phys. 10, 1745 (1969).

9 E. T. Newman and R. Penrose, Proc. Roy. Soc. (London)
A305, 175 (1968).

10 A, Exton, private communication.

11 E, T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962);
4, 998 (1963).

12 The correspondence between the notation here and that of
Sachs (Ref.2)is2y =y +d,2¢g=y—6,b=4.

13 We assume the Newman-Penrose spin coefficient formalism
is well known, and we follow the sign conventions and notation of
Ref. 11, with the exception that Greek indices run through 0, 1, 2, 3
and Latin indices through 2, 3.

14 §, W. Hawking, J. Math. Phys. 9, 598 (1968).

15 94 and o denote the ordinary derivative, V,and ;a the covari-
ant derivative.

16 E, T. Newman and T. Unti, J. Math. Phys. 3, 891 (1962).

17 J, N. Goldberg and E. T. Newman, J. Math. Phys. 10, 369
(1969).

18 We use 0 since the more usual d is reserved here for an intrinsic
tetrad derivative.
19 Here we are using the notation

oL

oL
L = ==,
Oya

Wap

This notation will also be used with the variables g, which are
introduced in the following paragraph; thus,

=2k gL
g, 0ga.p
20 H, Streudel, Nuovo Cimento 39, 395 (1965).
21 Y, Streudel, Z. Naturforsch. 21a, 1826 (1965).
32 A, Trautman, “Conservation Laws,” in Gravitation, L. Witten,
Ed. (Wiley, New York, 1962).

94°L =




NEWMAN-PENROSE CONSTANTS

23 A, Trautman, Commun. Math. Phys 6, 248 (1967).
2 5,,vp0 is the completely antisymmetric tensor and 70123 = (— g)
25 (0, abbreviates O(1/r®) for n > 1.
26 Summation over m is understood.
27 It is important to recognize that the Maxwell equations allow
one to write
bods

0uS = B[$25 s — F) + $i0¢ — 20°6147 —
(see Appendix A for the definition of 5.

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11,

3413

28 B, T. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966).

2 R, Sachs, Phys. Rev. 128, 2851 (1962).

30 J, N. Goldberg, A. J. Macfarlane, E. T. Newman, F. Rohrlich,
and E. C. G. Sudarshan, J. Math. Phys. 8, 2155 (1967).

31 M. Carmeli, J. Math. Phys. 10, 569 (1969).

33 A, Staruszkiewicz, J. Math. Phys. 8, 2221 (1967).

33 The operator 3 defined here is related to the usual Newman-—
Penrose operator by § = 2-5xp.

3¢ B, Kozarzewski, Acta Phys. Polon. 27, 775 (1965).

NUMBER 12 DECEMBER 1970

Perturbation Theory for Damped Nonlinear Oscillations

KENNETH S. MENDELSON
Physics Department, Marquette University, Milwaukee, Wisconsin 53233

(Received 4 June 1970)

A perturbation theory has been worked out for the decay of autonomous, nonlinear oscillations in the
case where there is large linear damping. The solution reduces to a solution obtained by Kryloff and
Bogoliuboff for small damping and to the perturbation solution for periodic oscillations for vanishing
damping. The solution is applied to the decay of oscillations in Duffing’s equation. In this case it shows
good agreement with a solution obtained by numerical integration.

I. INTRODUCTION

In most treatments of nonlinear oscillations by
perturbation methods, only periodic oscillations are
treated; transients are not considered. Kryloff and
Bogoliuboff* have used a perturbation method to
discuss transients in the equation

X4 v = —¢f (x, X), 1)

where ¢ is a small parameter. In this equation the
damping terms are small.

It is of interest to extend the perturbation method to
the case where there is a large linear damping in
addition to small nonlinear terms. In the present
paper the method of Kryloff and Bogoliuboff is
extended to the equation

X+ 2% + v = —¢f (x, X), 2

where again e is a small parameter. It is assumed that
y < v so that the system is underdamped in the linear
approximation.

The perturbation method is developed in Sec. II.
In Sec. III it is applied to the decay of oscillations
described by Duffing’s equation.

II. THE PERTURBATION METHOD
For € = 0, Eq. (2) has the solution

3)
“)

X = aoe”" cos (wet + o),
where

w = 0% — yH}

and a, and y, are constants. We seek a solution of
Eq. (2) that reduces to Egs. (3) and (4) in the limit
e —0.

Following Kryloff and Bogoliuboff, we look for a
solution

x = x(a, p), )
where x is periodic in y and where
da _ dy _
i §(a), T w(a) (6)
Substituting Eqs. (5) and (6) in Eq. (2) yields
9%x 0%x Ox
2Y N 2 2 »v 2
waw2+ Eaa +§ (f + )a’P
( dé 42 5) Px
=—ef(x ng—c%-é' ) @)

To obtain a perturbation solution of Eq. (7), x, &,

and w are expanded in powers of ¢; thus
x=Xxotex;+"-,
§=—ya+ e+,

W= wy+ ew; + -

®)

where w, is given by Eq. (4). The leading terms in the
expansions for & and w are chosen to yield the solu-
tion (3) and (4) in the limit e — 0.
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Substitution of Eq. (8) into Eq. (7) yields a system
of equations for the terms in Eq. (8). The equation
for the zero-order terms is

o %x, *x,

0%x 0x,
2 2 0
V4 Bt

+ 2yw
ag Voaw

°a

+ 7%

d
— 7' 5’:; + (@4 )% =0, (9)

which has the solution

(10)

Xo = A COS Y.
The first-order equation is

o 9%, 0%,

— 2ywea i 2&
" dady

tya da®

°a

+ 2yw, aa—);l —y'a Ox1 (w5 + ¥Hx;

da

. d .
= 2wyw4a cos P + 2we; sin y — ya % asin y
a

d
+ (ya —51 —_ yEl) cos y
da

— f(a cos y, —wya sin y — ya cos ).

(11)
Since the function fis periodic in v, it can be expanded
in a Fourier series:
f=1Fy(a) + X [F.(a) cos ny + G,(a) sin ny]. (12)
n=0
The coefficients in Eq. (12) can in turn be expanded
in Maclaurin’s series in a;

F,(a) = ZF at, Ga) =3 Gak (1)
k=0
In the limit y — 0, the terms in cos ¢ and sin y on
the right side of Eq. (11) must vanish identically to
prevent the appearance of secular terms in the solu-
tion.! We require that these terms vanish for all y.

This leads to the equations

d
2wewqa + ya ‘f ~ y& = Fy(a),

d
2, — ya* T2 = Gy(a). (14)
da
Expanding &; and w, in power series in a,
0 a
= ZA’(‘;I)ak’ w, = EBl(cl)ak—l’ (15)
k=0 k=0

leads to the equations

(k . 1)714](.;1) + zwoB(l) — F(l)
20)0/1;‘1) — (k _ 1)7B(1) G(l)

KENNETH S. MENDELSON

from which we obtain

(k — DyFY + 20,6
dof + (k — 1)2}/2
20,FY — (k — 1)yGP

dof + (k — 1)**

1
A()__

b

B = (16)

To determine x, , it is written as a Fourier series in ¢,

%8, ¥) = (@) + 3 [1,(a) cos 1y + 2,(a)sin ],
)

and the coefficients are expanded in power series in a,

o0
— sz(c")ak-
k=0

Substituting Eqs. (17) and (18) into Eq. (11) and using
Egs. (12) and (13) then gives

Yo@) = 3 APab, z,(a) (18)
k=0

[(1 = nMof + (k — D457
— 2n(k — Lo By = —F{",
2n(k — Dywedi” + [(1 — n*)of
+ (k - 1)272]B§cn) = _G,(cn),

which have the solutions

A;cn)
(=)o + (k= 1) 1F" + 2n(k —1)yw,Gy™
[(1 =n*)wg+(k—1)**1+4n(k—1)*y*wp
o 2n(k—=1)ywoFi™ —[(1—n®)wg+(k—1)**]Gi™
B, = 2y, 2 2 2
[(A—n*)og+(k—1)*"T+4n*(k— 1) w
(19)
This completes the determination of the first-order

corrections to the solution. The procedure can be
carried to higher orders in the same way.

III. EXAMPLE: DUFFING’S EQUATION

As an example of the above procedure, we consider
the decay of oscillations in Duffing’s equation,
% 4 2p% + 12 + ex® =0, (20)

In this equation

= a*(3 cos p + } cos 3y)
(2D

f(xg, Xo) = x5 = a®cos® p

. or

F(l) %’ F(3) i’

with all other coefficients vanishing. The coefficients in
the solution are obtained from Egs. (16) and (19).

(22)
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The nonvanishing coefficients are

(1)
By’ =—
Y 82’
2 2
@ 2w5—y

- ¥ 23
2T 160340k + ) @)

3y,
16v%(40d + »%)

Combining the results obtained above yields

3
By =

3ye 4
—=—yva+—"—a 24
va+oa (24)

dt

and
dy 3wee
——=w ——a. 25
dt 0T gy 25)

Equation (24) has the solution
2 3
a=ae™ / (1 + 36—‘120 (e — 1)) . (26)
8
Substituting Eq. (26) into Eq. (25) and integrating
gives
3 2
v = yo+ 0ot — n (1 + 2500 (ot 1)). @7)
2y 8
Finally, to first order in ¢, the solution to Eq. (20) is
x = acos y + eA¥a® cos 3y + eBPa’sin 3p. (28)

As a check on the solution of Eq. (20) obtained
above, a second solution was obtained by numerical

3415

Fic. 1. Solutions of Eq. (20) obtained by perturbation theory
(solid line) and numerical integration (dashed line) for ¢ = 1/4/2,
v=1,and e= 1.

integration using a fourth-order Runge-Kutta for-
mula.? The results are plotted in Fig. 1 for y = 1/,/2,
v =1, and € = 1. The two curves agree very closely
even in the region where the function is changing
rapidly. ’
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The established normal modes of the vector equation of transfer describing the transport of polarized
light are used to construct solutions to typical half-space problems. The half-range completeness theorem
required by this method is discussed in the context of systems of singular integral equations. Although
the Riemann-Hilbert problem encountered here is defined in terms of continuous rather than Holder-
continuous functions, the existence of a canonical solution is established, and the developed properties
of this canonical matrix are used to complete the proof of the necessary half-range expansion theorem.

I. INTRODUCTION

We consider here the vector equation of transfer

b 21,0 + 15,0 = 10000 | Qe )
0

applicable to several studies of the scattering of
polarized light.! Relying principally on Chandrasek-
har’s formulation of this mathematical model,! we
denote by I(r, u) a vector whose two components
I(7, u) and I(r, p) are the angular intensities in the
two states of polarization. Further, = is the optical
variable, and u is the direction cosine (as measured
from the positive  axis) of the propagating radiation.
The scattering process considered here is character-
ized in Eq. (1) by the single-scatter albedo w and the
square matrix Q(u), with Q(u) denoting the transpose
of Q(u). Although much of the analysis presented in
this paper is valid for a general Q matrix of poly-
nomials, we are concerned primarily with the form

3+ 2)*[c/f +31 -0 Qo - /f)];

A =29l Ke+2) 0

@

we thus allow the right-hand side of Eq. (1) to contain
the two parameters » and c so that the following
special cases can be readily identified:

For ¢ = 1 and w = 1, Eq. (1) with Eq. (2) yields
Chandrasekhar’s conservative Rayleigh-scattering
model!

w200+ X ) = 3 f Ko WG ) s 3

where
, 21 — 2 1 — 2 + 2,2 2
K(,u,,u)=2|:( w)X ’2/" )+ wp .u:|. 4
7 1
For the case ¢ € [0, 1] and @ = 1, Egs. (1) and (2)
yield Chandrasekhar’s conservative model' for a

mixture of scattering laws,
0

u— X, p) + K7, 1)
or

=3[ kG i) + (0= OB ) s (9

)

Finally, observing the choices ¢ =1 and we€
[0, 1), we note that Eqgs. (1) and (2) yield the non-
conservative version of Eq. (3), as considered, for
example, by Simmons,? Mullikin,® Abhyankar and
Fymat,' and Schnatz and Siewert,® whereas, if we
allow the values ¢ € [0, 1] and w € [0, 1), we obtain
the analogous nonconservative version of Eq. (5).

In order to establish the elementary solutions of
Eq. (1), we introduce the proposed form

where

E=

o=

(6)

. In(T’ p) = @(, /‘)e-rm M
to obtain
(n — WB(n, p) = 3onQ(EM(n), ®)
where the normalization vector M(v) is given by
1 ~
Me = [ Qe ) da ©)

In the usual manner,® we first consider the discrete
spectrum, 7 ¢ [—1, 1], and solve Eq. (8) to find

1

B9, p) = 2o, Q(M(+7,), (10)

N F 4
where 47, are the two zeros (in the complex plane
cut from —1 to 1 along the real axis) of the dispersion
function
A(z) = det A(2), (11)

where

AZ) =1+ zf_l‘r(y);‘_i_—”z—; (12)
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here | denotes the unit matrix, and the “characteristic™
matrix is

W) = 0Q(r)Q(u). (13)

Clearly since W(p) is a symmetic matrix, A(z) is
symmetric; further, we note that A(z) = A(—2).
Although the normalization vectors can be established
from

A(n)M(7,) = 0,

we do not require any explicit forms here.
Solving Eq. (8) now for n € (—1, 1), we write

(14)

B, ) = %w(n 7—7{#/; + Aoy — u)) QUM(),
(15)

where the symbol P denotes that all ensuing integrals
are to be evaluated in the Cauchy principal-value
sense and 4&(x) is the Dirac J functional. If we
multiply Eq. (15) by Q(u) and integrate over x from
—1 to 1, we find

A(n) ~ A()F()IM(n) = 0; (16)
and hence from
det [A(n) — A(M¥ ()] =0, 17)
where
o) =140 Yo —L—du,  (9)
e

we obtain, in general, a quadratic equation in A(7),
which yields two solutions 4,(#) and A,(n). There is
thus a twofold degeneracy for the continuum, 7€
(—1, 1); there result then two solutions to Eq. (8),

®,(n, 1) =t (n £ A(m)d(n — u)) Q(uM,(n),
n—p

ne (—1’ 1):

Since the normal modes are now explicitly available,
we write our general solution to Eq. (1) in the form

K, u) = Alpo)®(no, We ™™ + A(—ng)B(~n,, w)e’™

+L[A1(n)<1’1(n, 1) + As(n) Py, w)le" dn,
(20)

where A(L7,) and 4,(n), « = 1 and 2, are the arbi-
trary expansion coefficients to be determined once
the boundary conditions of a given problem are
specified. The full-range expansion theorem for the
eigenvectors considered here has been established by
Schnatz and Siewert®; it is, however, the consider-

«=1and 2. (19)
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ably more important half-range expansion theorem
we wish to discuss.

II. ANALYSIS

In order to illustrate the need for the half-range
expansion theorem, we consider a typical half-space
problem: We seek a bounded solution to Eq. (1) for
7€ [0, o) such that the radiation incident at the
surface may be specified, i.e.,

10, p) =X(w), pe(0,1), @1

where I(u) is given. Clearly, a bounded solution can be
readily obtained from Eq. (20) by requiring A(—17,) =
0 and A4,(n) = A,(n) =0, 5 < 0. Thus the desired
solution can be written as

K7, w) = A(no)®(r,, e

+J; (A, B0, 1) + A() o, W]~ dy,
(22)

where the expansion coefficients must be chosen
such that Eq. (21) is satisfied. We must solve, there-
fore, the system of singular integral equations

() = A(no)®(n0, 1)
+ f L)@, 1) + Ason)®s(n, 1] i,

we(©,1). (23)

A statement to the effect that Eq. (23) admits a
solution for an arbitrary Holder” vector I(u) is the
required half-range expansion theorem; it is this
statement we wish to establish.

For the sake of notational convenience, we now
introduce the matrix

W(n, u) = [@i(n, @) Ps(n, w)] (24)

and a vector A(#), with elements A4;(#) and A,(),
in order to write Eq. (23) as

1
(W) = j W, wWAG) dy, we©,1), (25)

where temporarily we have taken the discrete term to
the left-hand side of the equation and defined

Y'(p) = X(p) — A(no)® (1o, p). (26)

We note that, when Eq. (15) is premultiplied by Q(x)
and Eq. (16) is used, there results

Q¥ = (12 ¥ + oy — W) | Ve,

| 27)
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where V(#) is the normalization matrix:

voy = G@¥e s @)

A more convenient form of Eq. (25) can now be

established by premultiplying that equation by Q(u)
and using Eq. (27):

i 1
QUOY () = Mu)Blps) + F(u )J;) nB(n)ﬂ—{;ﬂ dn’

ue@©,1), (29
where we have defined

B(7n) = V(nA(n). (30)
In the usual manner, Eq. (29) can be converted to an
equivalent inhomogeneous Riemann-Hilbert prob-
lem.57 To this end, we introduce the sectionally
holomorphic function
1 M dn
NGO == [m . 6D
27i Jo N~z
with boundary values, from above (+) and below (—)
the cut, given by the Plemelj formulas’

N(u) = — f nB(n) —L— dn + 3uB(), ue(©, 1);
2wiJo N — U

(32)
and thus
1 P
iIN) + N()] = f Bn) —L— dn, we(©, 1),
A
(33a)
and
N*(1) — N“(a) = uB(#), pe(0,1). (33b)

The boundary values of the A matrix, as given by
Eq. (12), are related by

At () + A-(p) = 2A(w),
and
At(p) — A(p) = 2mip¥ (), pe(—1,1);
these relations can be used with Eqgs. (33) to write
Eqg. (29) in the form
pQUY () = A+(N*(u) — A~(WN-(»),
pe@,1).

The general solution to the inhomogeneous Eq.
(35) may be written as’

pe(=1,1), (34a)

(34b)

35

1 d,
N = X5, || Fwre - + pe).
(36)
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where P(z) is a vector with polynomial elements,
T(p) = pXH (WA ()] Qw),

and X(z) is the canonical solution to the homogeneous
problem

Xt(u) = X~ (W) [A- ()] A+(u), pe (O, 1)

Clearly, then, to complete the desired proof,we must
argue that a matrix X(z), analytic in the complex
plane cut from 0 to 1 along the real axis, exists and
has properties such that N(z) as given by Eq. (36)
can be made consistent with the original definition
introduced by Eq. (31).

In order to be consistent with the notational con-
vention established by Muskhelishvili’ and Vekua,®
we define @(2) to be the transpose of X(z) and thus
write the transpose of Eq. (38) as

Pt(p) = G)P (1), ue(01),

where the symmetry properties of A(z) allow us to
write

(37

(38)

(39a)

G(w) = A WIA~ (W], re(0,1).

It is clear that,by adding an arbitrary arc C; to the
real-line segment [0, 1], we need only deal with a
closed Lyapanov contour C. On C; we define
G(u) = I; thus, since Eq. (12) yields continuous
boundary values on (0, 1) while at the end points of
the line segment lim,_,, G(g) =1lim,_,_ G(p) = |,
the matrix G(u) is continuous for all 4 € C. This
funtction, however, fails to be Holder continuous at
u =1, as can be seen from the special case ¢ = 0.
Here G(u) becomes

Gu) = [ £

(39b)

(1):|, pne(0,1), ¢c=0, (40)

with g(u) being equivalent to the one-speed result
discussed by Case and Zweifel®:

) = [1+ on (s p ) + topri|

I —p
x |14+ %o, ln(
[ # 14 u

) - %w,u'n'i]_l. (41)

In order for g(u) to be Holder continuous at u =1,
we require [g(u) — g(Di/lu — 1|* to be bounded for
some o € [0, 1). However,

lgw) — 1| _ _wpnw
o =1 e =1

N

V4 p
42
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is clearly unbounded for all appropriate «. For the
same reason, the matrix G(u) fails to be piecewise
Holder continuous on C. Thus, without modification,
it is apparent that neither the theory given by
Muskhelishvili? nor that of Vekua® is sufficient for the
solution of

Pt (p) = G(WP (), (43)

and so we base our reasoning for the existence of a
canonical solution on the theory given by Mandza-
vidze and Hvedelidze.® These authors prove that if
G(u) is a nonsingular continuous matrix and C a
simple closed Lyapanov curve, then there exists a so-
called canonical matrix ®,(z) such that: (i) The
matrices ®y(z) and [®y(z)] are representable by
Cauchy integrals with polynomial principal parts at
infinity; (ii) the matrix ®(z) has normal form at
infinity; (iii) the boundary values on C of ®y(z) are
L, functions (p > 1) and those of [®,(z)]? are L,
functions, p and ¢ being conjugate indices; in
addition, these boundary values satisfy

G(u) = P{(IPT(W)]™ (44)
almost everywhere on C. The procedure reported by
MandZavidze and Hvedelidze is not concerned with
the solubility and equivalence of a certain quasi-
Fredholm equation as is the theory given by Muskhel-

ishvili (see Eq. 126.5, p. 386 of Ref. 7). Basically their
method is to show that the problem

0 (1) — O~ (1) = Gy()O®(u) + E(n), ponC,
(45)

where each component of the matrix G,(u) is suffi-
ciently small and E(g) is a given matrix of L, func-
tions, can be solved by the following sequence:

Or(u) =0

Hwec,

(46a)
and

1 )
0.(2) =— j Gy(W) O 1) ——
2wi Jo n—z
m=1,2,3"---.

1 d
+— f E(u) ——,
27i Jo u—z
(46b)

This sequence has been shown to be Cauchy in the
L, norm™ and hence convergent to an L, function
which satisfies Eq. (45) almost everywhere.

In order to establish the required properties of this
canonical solution, we need to determine the index
of G(u), namely

,H

K =

N

. larg det G(w]c

which is easily seen, for the case of Q(u) as given by
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Eq. (2), to be unity. Thus the partial indices™-? satisfy
“7)

In actual fact, these partial indices turn out to be
zero and unity. A proof of this may be modeled on
one given by Kusder! Let ®,(z) be the canonical
solution to Eq. (43); then it is easily shown”*° that
any other solution of finite degree at infinity can be
expressed as

K1+K2=1.

P(2) = Py(2)P(2), (48)

where P(z) is a matrix of polynomials. Considering
now the function

¥(2) = A@)@o(—2)], (49)

we note that the boundary values of ¥(z) on C
clearly satisfy Eq. (43) almost everywhere. If we now
change z to —z in Eq. (49), we can take boundary
values of the resulting equation to obtain

¥o(—p) = AT, ue@ 1), (50a)
while

FH(—p) = A (uIPTW)]™, re(©,1), (50b)
since, as noted previously, A(z) = A(—z). Equation
(43) and the fact that A(z) = A(z) can now be used
to show that Egs. (50) yield W—(—u) = ¥+ (—p),
u € (0, 1), almost everywhere. Clearly, then, ¥(z) is
analytic in the plane cut from 0 to 1 on the real axis
and of finite degree at infinity, and thus ¥(z) is a
solution to Eq. (43). Consequently, it can be expressed
in the form of Eq. (48). We now suppose that one of
the partial indices is negative, say &, [note from
Eq. (47) that only one can be negative]; then the
first element of the first column of ®,(z) has a pole
at infinity. This implies, however, from Eq. (49) that
the first column of ¥(z) vanishes at infinity. But,
recalling Eq. (48), we note that this is impossible.
Thus the partial indices are zero and unity.

Since the existence of a canonical matrix ®4(z) has
been established, it is a simple matter to complete
the proof of half-range completeness. The fact that
®,(z) must be of normal form at infinity requires that

. 0
lim @o(z)[zo ] =1,

K2
FAad] 4

(51

and, since we have shown that the partial indices
must be nonnegative and sum to unity, without loss
of generality, we select x; = 0 and x, = 1.

We note that the analytic properties of N(z), as
given by Eq. (36), are correct if we make the identi-
fication

X(z) = ®y(2); (52)
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on the other hand, we observe from Eq. (31) that
zN(z) must be bounded as z tends to infinity. The
required behavior of X~1(z) for large z can be deduced
from Eqs. (51) and (52):

i+.. §+..
Xz)~z b (33)
.z_.2+. 1+.

Considering now Eq. (36), we find that, in order for
zN(z) to be bounded at infinity, we must take
P(z) = 0; the behavior of X~1(z) for large z, as given
by Eq. (53), indicates that zN(z) will not be bounded
at infinity unless we impose on I'(y) the constraint

[T [ oo an=o. (54)

where the superscript T denotes transpose. Recalling
Eq. (26), we see that Eq. (54) can be satisfied for all
appropriate I'(u) simply by choosing the correct
discrete coefficient A(n,):

0 T 1 0 T 1
460 [ w00 e =[] [ 010 .
1 0 1 0
(55
The desired expansion theorem (23) is thus established.
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A diagrammatic technique is presented for computing the matrix elements of the generators of the
unitary, orthogonal, symplectic, and symmetric groups (4., D, , B,, C,, and S,) within any of their uni-
tary irreducible representations. Examples are worked out.

1. INTRODUCTION

The simple classical Lie groups, with algebras
4,,D,, B,,and C,, have a great many properties in
common. So many, in fact, that it is useful to search
for similarities among them rather than differences
between them.! The symmetric group S, is also
closely related to the classical groups, particularly
U(n), and may be treated analogously.!

In this paper we exploit the similarities among
these five series of groups in order to find a convenient

vehicle for describing their unitary irreducible
representations (UIR’s). We present a diagrammatic
technique for constructing the matrix elements of the
generators for each of these groups within any UIR.

2. THE COMMUTATION RELATIONS

The commutation relations among the generators
of the classical and symmetric groups are

Un): A,4[U%, U] = U'6"; — U',Bi?,
ijrs=1,2,"-,n,
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1. INTRODUCTION

The simple classical Lie groups, with algebras
4,,D,, B,,and C,, have a great many properties in
common. So many, in fact, that it is useful to search
for similarities among them rather than differences
between them.! The symmetric group S, is also
closely related to the classical groups, particularly
U(n), and may be treated analogously.!

In this paper we exploit the similarities among
these five series of groups in order to find a convenient

vehicle for describing their unitary irreducible
representations (UIR’s). We present a diagrammatic
technique for constructing the matrix elements of the
generators for each of these groups within any UIR.

2. THE COMMUTATION RELATIONS

The commutation relations among the generators
of the classical and symmetric groups are

Un): A,4[U%, U] = U'6"; — U',Bi?,
ijrs=1,2,"-,n,
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S0(2n): D,[0,;, O,,]
= 0,-355,- + Ofrais - Oirajs - O:isair’
ijrs=1,2,--,2n,
S0(2n + 1):B,[0,;, 0,,]
= 040, + 0,,0;, — 0,,0;, — 0;0;,,
jrs=1,2,---,2n 4+ 1, (2.1
Sp(2n):C,[Z%;, Z7]
=sgn (jr{{Z'07"_, + 2778, + Z2.,677,
+Z77680,), djrs = 1, £2,- -, £n,
S, Sijsrssifl
= Srs{l - [61'1' + 61‘3 + ajr + 618]}
+ S:iséir + S:irais + Sz'sa;'r + Siréis

+ B + 0:)(Si; — Siy) + (05 + 85)(S;5 — Sy
These generators have the additional properties
Uii = UjiTa
0, = —-0", = —0,,
ij J J (22)

Z', =27 = —sgn (iNZ7_,,
Sy = SHT =S;=87.
These commutation relations (2.1) are used to
construct the matrix elements of the generators
within UIR’s. The similarity among these commuta-
tion relations indicates the extensive similarities which
exist in the construction of the UIR’s.

3. STATE LABELING

If a nested sequence of canonically embedded
subgroups

GmlGn—1)] |GG+ 1)]GG)
1GE—Di--- G 60) (3.1

obeys the following two conditions,

(1) the UIR’s of G(i) are contained at most once in
the branching of any UIR of G(i 4 1) under the
subgroup restriction G(i + 1) | G(i),

(2) the last nontrivial subgroup is Abelian,

then we reach the following conclusion:

Conclusion: Every basis in any UIR of G(n) is
contained in exactly one sequence of UIR’s in the
descending series of subgroups G(n) | G(n — 1) | - - -]
G(1). Such a specification of representation labels
provides a mechanism for a complete labeling of bases
within any UIR of G(n).

The groups U(n), SO(n), and S, obey conditions
(1) and (2) above. Thus it is possible to label bases
within any UIR by specifying a chain of partitions.2
The partition at level i, i=n,n—1,---,2,1,isa
representation label for the canonically nested sub-
group G(i). The ith level partition contains i rows for
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the unitary, groups [4i] rows for the orthogonal
groups, and exactly i boxes for the symmetric groups.

The symplectic groups obey neither condition (1)
nor (2) above. Nevertheless, it is known?34 that the
bases in any UIR of USp(2n) are labeled by a
descending chain of partitions, i =2n,2n — 1,
2, 1. The partition at the ith level has [$(i + 1)] rows.

4. BASIC SHIFT OPERATORS

The group generators in general connect bases with
different partition sequences. They may be viewed,
therefore, as operators which alter the partition
structure of a basis.

It is useful to introduce a set of basic shift operators
defined by

+ _ (r)+

I, -—El L'

Here 7,7'% is an operator which has nonzero matrix

elements only between a basis |b) and a basis |b') =

lee;VEb). Here ;7% creates (annihilates) one box in the

rth row of the ith level partition. I, and I, are

mutually adjoint. It is also useful to introduce a
diagonal operator I, which is self-adjoint.

The explicit structure of the matrix element involving
I;"* and I, depends on i and the particular series of
groups involved. These structures are given in Table 1.
The important point is that all generators for the
unitary, orthogonal, symplectic, and symmetric groups
can easily be expressed in terms of the operators 1.+ and
I%. Moreover, the basic shift operators I+ are local
in the sense that their matrix elements depend on the
structure of only the (i — 1)st, ith, and (i 4+ 1)st
level partitions.

5. AUGMENTED PARTITIONS

Partitions 4 are convenient for the purposes of
representation and state labeling, as well as discussing
branching rules. Another quantity, the augmented
partition I, is more naturally involved in explicit
computational procedures:

4.1

e
]
(S -]

+ R (5.1

> & (5.2)
>0

Here R is, as Bsual, half the sum of the algebra’s

positive roots. R for the symmetric group is chosen to

express the duality between S, and U(n + 1):

S,iRi=3%n+1—i
AjRi=n+4+1—i, i=12"",n+1,
D,:R;=1(2n + 0) —j,

B,:R;=32n + 1) —j,
CoRy=32n+2)—j, j=1,2,---,n.

(5.3)
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TABLE I,

Shift up operators

= =
Unitary groups A, £ ‘Z 1 B
=

Diagonal operators

I by = (T, — Tiy) |b)
= ==
==l R —
' = =

13“ [b> = [ZTzk—l = (T + Tzk—z)] Ib>

T
Orthogonal groups
ny n , o . \
/ e Ej \
AR R TN ==t
L ==/
Nt e
=
Symplectic groups
Ca
* Exg L2k =3
== =
/e £
5 L
Symmetric groups ¢ — (15')% e
’ (e | )| BT

ro

(122}

For the symplectic partitions at level 2n — 1,
Ry=3n+1) -}

In all subsequent work, when a partition is used to
label a UIR or a basis, or to describe branching rules,
the partitions 1 are to be understood. But, when parti-
tions are used in an explicitly indicated computational
sense, the augmented partitions / = 1 + R are to be
understood.

6. THE MATRIX ELEMENT CALCULUS

The matrix elements of the 7, %3 basic shift operators
are presented in a diagrammatic manner in Table I.
A dictionary for converting these diagrams to a more
familiar analytic representation is given.

(1) A row s (marked with an x) in the ith partition
undergoes a length change by having one more ()
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or one less (m) box. It may be connected to row r in:
(i) the (i + 1)st level partition

l

| (i + Dst level
r < <
S

s X

A |
I

ith level

=0+ D=3 [Ha+@+D -1

(ii) the (i — 1)st level partition

— «

ith level
s X ‘

[ ]
1
r j—J
< |
(i — 1)st level
[l:—l - (lis - 1)+ 1] [l:—1 + (lia - 1)+ 3]

(iii) the ith level partition

| ith
—Isx | level
o ]
—

|
U =19 Q7+ 1 G+ 17 =215

(iv) or may not be connected to another row at all

I .

s X

LLLH

ith level
-3 &'+ 7.

(2) Products of factors involving the same row
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are indicated

| <— (i + Dst level

| e
L e
L |

=10, -1 - b

r=1

s X ith level.

I
I
N

|

(3) All line segments appearing on the right of a
partition sequence indicate factors appearing in the
numerator; those on the left, in the denominator.

4) T, =Y,_, 1, where these terms occur, they
may equally well be defined by 7; = > 4,". Thisis the
total number of boxes in the ith level partition. -

7. THE UNITARY GROUPS
The generators U’;, basic shift operators Z,**%, and
Cartan generators H and E; for the unitary groups®
are related by

Uii = Hi = Iia’
Uii+l = Eel‘-—ef+1 = Ii+9 (7'1)
UH-li = Eei+l-ei = Ii—'

From Table I we can immediately read off the matrix
element of I,""; it is the positive square root of the
quantity given there:

<ai(r)+b| I (r)+ | b)

i+l 3
H G- +D+ 1 H(l;+1 )
=|+=
H (F =+ 1) H 1 -1
1#r 1#r (72)

The sign + is chosen here and subsequently to make
the product within the radical positive.

The matrix elements of 7"~ are simply related to
those of I* by transposition (Fig. 1). The relations

U1+2 = [Uﬂ-l’ U+lt+2] = [I+z’ i+1+] (73)

. 2
e z

B
= -+ b

==
Il ¢ -

i+1

I sy R e LN
H;;&r [Ili - (I'i - 1)]

F1c. 1. The matrix elements of 1=, are related to those of I'"**, by

transposition.

+
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—3

=
E.E2

E%éEEI

FiG. 2. The matrix elements for the commutator [I*,, I';,,] differ
from the product of the matrix elements of I*; and 7%, only by
(not having) the factors shown as dashed lines. These are just the
difference brackets connecting rows undergoing a length change in
adjacent partitions. The matrix element itself

(“s+i°‘f+i+1b| [1(8)+i’ 1m+i+1] |6y

is £ the square root of the product above, depending on whether
r<sorr>s.

17" 15] E-xr
EXS
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Example:

I
|
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]
10

«

U

o 8

M) WU

~

I
||

I
[ 1]
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lead easily to matrix elements for U%,,, shown in
Fig. 2. From the commutation relations (7.3) and
Figs. 1 and 2 we easily see the algorithm for con-
structing the matrix elements of U by inspection:

(i) Connect all rows undergoing a length change to
rows in the appropriate contiguous partition.

Tk,
(ii) Remove all difference factors ( ‘)
2 Ly

connecting two rows, both of which undergo a length
change.

(iii) The over-all sign of the matrix element
("« o /7°b] U, |b) is (=)™ Here n is the number
of timesry, >r, k=i, i+1,--+,j—1

(iv) This algorithm holds for the commutators
[7;*, I ] and [I7, I;,,] in the orthogonal and sym-
plectic groups as well.

(im—@w—d—n@—d—m@—f—nf
d—e+2)(d—e+1)

(im—e+nw—@@—e—nw—nf
d—ed—e+1) '

8. THE ORTHOGONAL GROUPS®

The relation between the anti-Hermitian infinitesimal generators O, and the basic shift operators is

= It 73 - —Jt I
Onrooes = Mo + i1 — Iipns Opprron = I — Iy

[ ]
]

2 e | N
d [ 1[]

|

g |
(W

IS

DH%H

(8.1)

[(c — d)c+d+ D}

[(c + d)(c — d + DI,
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]
=
]
]
H— ) Y
1
]
] (@a—c+ 1)(c—b)c+dla+c+ Db+ ) — d\
- [:] ( 2c — Dee(2e + 1) ) '
C ]

It is useful to reindex the generators Z¥;, of the symplectic group as follows:

(w+c+mw+c+n@—d+nm~@@~b+n@+d+nf
Qe+ 3D+ De+ DR+ 1)

9. THE SYMPLECTIC GROUP

Z¥, 7%, i=2, i'>0,
A =2-i) -1, <0
The relation between Z%;; H, E;; and I5 3 is
2% = —Z% Yy = H, = 1%,
Z% g = Z%—ﬁzk =E, o,
= IMans IMopal + [Ty Iopes)s
Z%pr = Z2k_1f2k = Egpp = Iypy-

For purposes of computing matrix elements of the basic shift operators I*, it is useful to assume the
partitions in the (i — D)st, ith, and (i + D)st level have [}i], [3i] + 1, and [3i] + 2 rows, respectively. Some
of these rows are necessarily of length 0, as indicated (by |) in Table I. The computation of the commutators
in Eq. (9.1) is formally identical to the computation shown in Fig. 2. The results are shown in Figs. 3 and 4.

(9.1)

2 2

= = = =

L | B = |5
+ e [Izk'IZkH] Ei?—-— E.er [Izkvlzk“']g_xrg
= ==

—

Fﬁg;}w gx
B Err—

= =

FiG. 3. The value of (&' "y a®*y 1] U g, PP sl B) is & the Fi1G. 4. The value of (0" 5,0 55 3| 11" s I* gua} 1B) is £ the
square root of the absolute magnitude of the product of factors square root of the absolute magnitude of the product of factors
shown above. The £ is chosen depending on whether s < ror shown above. The & sign is chosen depending on whether s > r or
s> r. s<r,
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Example: For the representation (a, by, of USp(4):

Z'

The exchange operator P, ;., connects bases in which only the ith level partitions may differ. They can
differ at most by having one additional node in the sth row, one less in the rth. The operator P, ,,, consists

of a nondiagonal part (I*",,)*, and a diagonal part (I*,,)%:

whose values are indicated in Table I. We observe that the diagonal matrix elements are of the form
+ (integer)™, depending on the order of box removal. In the limiting case of removal from the same row

ix

e—1

f—1

n /e o
I
N

Sy

I
I
] (

= {2(c + d) — [(a + b) + e]} ¢

@—e+Dm—d®~b+D@+2f

(c—d+2(c—d+1)

((e —dfa—~d+ 1)b—dYd+ 1)

c—dfc—d+1)

)

((c —~ ¢ 4+ (e — d)e + 1)f)%.

e(e +

1y

10. THE SYMMETRIC GROUP"#®

P, fi+1 = g a s’;s)ii + Z(I S s”
r¥s

(column), the limiting value +1 (—1) is reached.

((e —f+ a —d+ )b ~ d)(d + 1)c — e)e + 2)
c~de+2c—-d+De+ 1

((e ~f+Da—~ce—~b+ e+ 2Xe—~d+ I)e+2)
(ce—d+De+De—-d+ e+ 1)

)lf

)
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Example: With respect to the bases
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[T I

T

:‘_ﬂ

jJ

1]

[

[T

N [

the matrix representative for Py, is found immediately
by inspection

-t 2
/2 +3
+1

P34 -1

-} 3/2
$/2  +3

11. COMMENTS

The matrix elements of the basic shift operators
I3 show a great deal of symmetry in their component
difference (and sum) factors involving contiguous
partitions. Thus, if one factor occurs involving a row
undergoing a length change and a row in a contiguous
partition, then additional factors involving the
remaining rows of the contiguous partition also occur.

These products vanish whenever addition or removal
of a box in the ith partition renders it impossible
either to obtain the new ith partition from the branch-
ing of the (i + I)st or to obtain the (i — 1)st from
the branching of the new ith level partition. The
products become undefined when the box added to
or removed from the ith level partition creates a
nonstandard (i.e., unallowed) partition.

Partitions? describing representations of D, may
have I";, = A";, < 0. The considerations of the two
preceding paragraphs then lead, in a very natural
way, to the existence of sum as well as difference
products for the orthogonal groups. The absence of
negative length rows for the unitary and symplectic
groups corresponds to the presence of only difference
factors in their matrix elements.

L [

i

L]

—

N

The local nature of the I*3; shift operators (cf. Sec.
4) indicates that their matrix elements depend only
on the structure of the (i — 1)st, ith, and (i + 1)st
level partitions. The matrix element is unchanged if
we consider a different representation of G(n)
(n > i+ 1) with the same i — 1, i, i + 1 partition
structure, or even if we go to a different group within
the same chain, provided the 7, i & 1 level structure of
the bases is unaltered.

O

12. CONCLUSION

A simple diagrammatic technique has been pre-
sented for the construction of the generators of the
unitary, orthogonal, symplectic, and symmetric
groups within any of their UIR’s. The main results are
contained in Table I and Egs. (7.1), (8.1), (9.1), and
(10.1). Examples have been given for each series of
groups.
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We confine our attention here to simply reducible groups and show how six of the seven points of a
finite projective plane PG(2, 2) constitute a “‘Pasch” diagram representing a 6 symbol. The class of all
equivalent symbols may thus be represented by the seventh point in the plane. Analyzing the symmetries
of such configurations, we derive two theorems, the first of which is the geometrical analog of Regge’s
result while the second gives the geometrical analog of the multiplication of two 6j symbols. In these
terms the analogs of Eqs. (I1), (I2), and (13) of Appendix I of Irreducible Tensorial Sets by Fano and
Racah are very simply expressed. In particular, the Biedenharn identity (I3) becomes a vector equation
{mod 2), and the relation with Desargues’ theorem is clarified. The advantage of this geometrical model
is that the structure alone survives and all summations and complicated coefficients disappear.

1. INTRODUCTION

Ever since Weyl's Gruppentheorie und Quanten
Mechanik* showed the way, physicists have become
increasingly interested in group representations. If we
denote two irreducible representations of a group G
by j; and j,, interest focuses on the reduction of the
Kronecker product

(1.1

If we assume that the characters of the j’s are real and
further that the coefficients c;;; are 0 or 1, the group
G is said to be simply reducible. We shall confine our
attention to this case though much of what we say
can be generalized.? Under these conditions c;, is
invariant under any permutation of the suffixes.

The purpose of the present paper is to amplify and
further develop the relationship of this representation

JiJe = Z CirJy -

theory to projective geometry as suggested by Fano

and Racah® in their Appendix I. We begin by intro-
ducing the familiar axioms* and interpret them in
terms of the representation theory.

Closely related to this discussion is the analysis of
the significant vector diagrams.® As a result of (1.1),
three vectors concur in every vertex of such a diagram.
If we dualize in the plane, we obtain a figure in which
three points (and only three) lie on every line, so that
the dual figure can be embedded in a finite projective
geometry PG(n, 2).% In such a context the formulas
(I1), (12), and (13) of Ref. 3 are of particular interest.

As a result of these considerations two theorems
emerge. Theorem 1 yields the analog of Regge’s
determination’ of the symmetries of the 6j symbol,
while Theorem 2 provides the geometrical interpreta-
tion of the multiplication of such symbols, based on
their representation by exponential functions as given
at the end of Sec. 4.

2. FOUNDATIONS

Let us begin by denoting j; 3 I by a point in our
geometry and assume:

(i) There are at least two distinct points j; and j;
(ii) two points j; and j, determine one and only
one line j; j, = jiji;
(iii) if j; and j, are distinct, there exists at least one
point j, # I such that c;;; % 0 in (L.1).

It follows from the symmetry of the ¢, that the same
line is determined by any two of its points. If we
assume that

(iv) there is at least one point not on the line j, i,
then, in order to define a plane and prove the inter-
section of any two coplanar lines, it is sufficient to
assume that:

(v) (Pasch)Ifl,, I, I, are three noncollinear points
and j, is a point on /, /I3, /, a point on /; /3, then there
is a point j; on /; [, such that j;, j,, and j, are col-
linear.

I3

@.1)

Iy Js

This assumption corresponds in group theoretic terms

to the nonvanishing of the 6j symbol®
{ji j ;;

L (2.2)
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If we assume further that

(vi) there is at least one point not on the plane
L, I; I3, we can prove Desargues’ theorem in space.?

In general, it is necessary to make a further assump-
tion to obtain Pappus’ theorem or the fundamental
theorem, but, if we assume there are only a finite
number of points on a line, then these theorems follow
from Desargues’ theorem.

We now make this assumption and limit attention
to PG(n, 2), in which there are 1 + 2 = 3 points on
every line and .

1+2+22+.+2n

points in PG(n,2). We can redraw figure (2.1) as
follows!®:

15(001)
(101) 7y HOID g4
Juin
(100)1; 75(110) 12(010)

with a coordinate system introduced as indicated.
The equation of the line j, j, js is

X+ x;+ x3=0 (mod 2),

and we shall denote the (mod 2) analog of the ordinary
6/ symbol (2.2) by
jl j2 j3

LonL Ll 24

It should be observed that the wvectorial sum
(mod 2) of any three collinear points in figure (2.3) is
the zero vector or, alternatively, such a sum of two
points is the third point on the line. We shall write

Ji+ Je=ji (mod2),
and this relationship enables us to define projection
in PG(n, 2).

3. GEOMETRICAL SYMMETRIES

We turn now to a brief survey of the symmetry
properties of the 6 symbol (2.4) as represented
geometrically in figure (2.3). Since a linear transforma-
tion or a “projectivity’” in PG(2, 2) transforms points
into points and lines into lines, it is only necessary to
write down all such transformations which leave

3429
J(1 11) in figure (2.3) invariant. To begin with,
1 00 010
I~|0 1 0}, (j1j2)(1112)~ 1 0 0],
0 01 0 0 1
1 00
(jzjs)(lzla)"’ 0 0 14,
010
0 01
(il ~{0 1 O],
1 00
010
(jl j2j3)(ll 1213)"’ 0 01 )
1 00
0 01
(j1j3j2)(l11312)"‘ 1 00
010

yield a permutation representation of S, correspond-
ing to permuting the columns of the 6; symbol.
Further symmetries interchange the j; I; by pairs:

010
(jl 11)(]2 lz) ~

(jz lz)(js ls) ~

— e = O = = O

(jl ll)(j3 I3) ~

(= = B e B =)

1
1
1
0
0
0
1
1

0

so that there are 24 symmetries in all.
We have, in fact, a modular representation of S,
which can be reduced by transforming by

1 00
1 10
1 01
to yield
111 0
(i) ~to|1 o),
0(1 1
1 ‘ 00
(Geja)lls)~[o]o0 1),
0|1 0
l_ 01
(ijdhld~lo |1 1),
0|0 1
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111 0

(hlGel)~lol1 of;
010 1
11 1

(jzlz)(jala)"’ o0j1 0}
00 1
1/]0 1

(jlll)(jals)"’ 0{1 0}
010 1

It should be noted that this representation is reducible,
but not completely reducible, with the expected!
irreducible modular components of S;.

4. FUNCTIONAL SYMMETRIES
In order to discuss the further functional symmetries
of the 6j symbol, Regge introduced?® the following
transformation of the ordinary 6j symbol:
v ja}___{ju Jo + X, ja—x} 4.1
{ll 12 13 Il’ lz—x, la+x ’ ( ) )
where x = 4(—j2 + js + I, — I5). This allows the con-
sideration of degenerate 6j symbols as well. The analog
of (4.1) in our geometrical interpretation is the follow-
ing:

Theorem 1:
‘jl J2 Js
L L1
_Hht+ry+z, ptx+z, jstx+y
“lh4y+z L+x+z A+x+J
(mod 2), (4.2)

for all points x, y, z in PG(n, 2).

As in (4.1), row and column sums (mod 2) are not
affected by these changes, and it is of interest to note
that every linear transformation of Sec. 3 can be
expressed in these terms. In particular,

(j1j2)(ll L) ~x =)= 0, z=/j,,
(jlja)(ll I) ~x=z=0, y=j,
(o)l ls) ~y=2z=0, x=j,
(jl ll)(jz I)~x=y=0, z=j,
(jl ll)(js Iy ~x=z=0, y=]j,
(Jz Iz)(js I) ~y=2z=0, x=j

Asin the application of (4.1), we may set x =y =0,
z = j,, to yield
jl j2 jB =”0 fs j3 j3 13
11 12 13 ] ls la Is ja
This is in effect a projection of the configuration on
the line j; /3. We may similarly project on to j; /; and

(J; ” (mod 2).
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Jaly to yield
hoJa s J o h Jo J b
= = . mod 2),
Lo Iaﬂ “0 L h L 0 j, ( )

for x=j,, y=2z=0 and x=2z=0, y=j,
respectively. Each of these 6j symbols is subject to
12 symmetries as described above.

Finally, we may project the 6j symbol on the point
J by setting x = j;, y = j,, and z = j, so that

J1 Ja Js I 000

L L I, j JjJ
which is subject to four symmetries. It is not difficult
to relate these degenerate cases to the application of
Regge’s transformation in the ordinary theory. '

We conclude this section by observing that all
symmetries of the 6j symbol (2.4) leave the remaining
point jin the plane PG(2, 2) invariant, and so it is natu-
ral to designate the class of equivalent 6j symbols (2.4)
by this point. In order to make explicit the vectorial
addition of points, we write this relation exponentially,
J1 J2 s
L L I
though the choice of the base e # 0 does not seem
important. Note that a set of points not satisfying
axiom (v) could only be interpreted by setting e = 0,
as we do in (5.2).

(mod 2),

@.3)

=¢ (mod2),

(4.4)

5. DESARGUES’ THEOREM

In order to see the full significance of the geometry
PG(n, 2) which we have described, it is necessary to
produce an interpretation for the multiplication of 6j
symbols. This is provided by the following:

Theorem 2:

i jz s
h L L
Ji+iis Je e, Jsts
ll+ 11,9 12+ 1219 13+ l:;
Proof: Since the top row sum is zero (mod 2) and

the lower row sum, as well as each columnsum, in(2.4)
is j, it is clear that we are only rewriting the relation

J+J=(+j) (mod2)
in exponential form.

v J2 Js
Lol

(mod 2). (5.1)

-Corresponding!® to (I1) of Ref. 3,

Ju o Je Jaf | J1 Je Js
LoL Lilh 1,
_(PP=1, for =1
—{0’ for 1l (med2. (52)
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Combining Eqs. (5.1) and (5.2), we recognize the
further degenerate symbol
“[o o l=

hoJ2 s
L LI

Ji Ja Js

Lol I 000

(mod 2
and its equivalents by Theorem 1.
Corresponding to (12), we have

11 ja 12 ] j1 11
o J qillll jo b
=f1j2fa=f111j Jhiohoj
L L I L jo Ja|lje L Is

(mod 2) (5.3)
without summing over j.

Referring to our geometrical axioms in Sec. 2, we
stated that it was possible to prove Desargues’
theorem in PG(3,2). We adopt a slightly different
notation using double suffixes to emphasize the
collinearity of points.

5.4

S Fuad 10

[CZYRAN

J oty

(5.5)
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If we coordinatize figure (5.4) as in the accompany-
ing figure (5.5), the coordinates of the centroids of the

plane faces of the tetrahedron incident in J are
(0111), (1011), (1101),

while that of the face opposite J is (1110). The “plane”
containing Jy, J,, J3, Jas, Ji3, Jiz has equation

X1+ x4+ x5+ x,=0 (mod?2)
with centroid (1111), so that

(1111) = (0111) + (1011) + (1101) + (1110)
(mod 2). (5.6)

Adding (1110) to both sides, we have
(1110) + (1111) = (0111) + (1011) + (1101). (5.7)

In terms of 6f symbols, (5.7) yields Desargues’ theorem

J, Jg T3 Ji Jo Js

Jos Jis Jeell 1 Jes Jis Jie

- Ji Jis Ju | Jes o i | Jes Jia T
J Ji Jisl i T JallJis Jis J

(mod 2). (5.8)

Clearly the choice of a coordinate system in figure (5.5)
is unimportant, but it should be observed that, while
a 6/ symbol is always represented by a unique point P
in its plane, P also represents the class of all 6f symbols
lying in different planes through P and equivalent
under (4.2).

If we apply Theorem 2 to reduce (5.8), we obtain

00 of _
J J J|

Jl J2 J3
(0111) (1011) (1101)

‘ (mod 2),

which is (4.3) in the plane x; + x, + x; = 0 (mod 2)
of figure (5.5). Desargues’ theorem is degenerate in
PG(2, 2), but it may be recognized in (4.3) by setting
h=h=Jy, a=l=Jy, js=Jy=Jy, L=
O111) = Jy,, L = (1011) = Jj3, Iy = (1101) = Jj,,
and j = J.

Since the fundamental theorem of projective ge-
ometry follows from Desargues’ theorem in PG(n, 2)
for n > 2, we conclude that any relation among 6f
symbols (2.4) must be provable in PG(n, 2). Further-
more, since any 3mj symbol is expressible in terms of
6j symbols, any relation between ordinary 3mj symbols
is derivable from (I1), (I2), and (I3) as stated by Fano

and Racah.
6. 9 AND 12j SYMBOLS

We do not propose to pursue this symbolical
analysis further, but it is perhaps worth commenting
briefly on the 9 and 12/ symbols.
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Without giving details, the reader will find it easy
to embed the appropriate diagram for the 9j symbol**
in PG(3, 2). The 12j symbol'® of the “second kind”
can also be embedded in PG(3, 2), but it is interesting
to observe that the interchange which yields the 127
symbol of the “first kind** requires PG(4, 2). In order
to see the reason for this, we coordinatize!® thus:

Jiv Jo Js Ja
Lol
ky ky ks Kk,
(10000) (01000) (00100) (00010)

= (11000) (01100) (00110) (10011)
(10001) (01001) (0O101) (0OO11)

Jo ks x
ks ji b
Ji ks

Ji ki L

i okox
ky jo L

Js ks x

. (mod 2),
ks Ja Iy

X

where x has coordinates (00001). If we project this
configuration from the point j(11111) on the space
of the tetrahedron j, j; j; x by adding j to each point
outside this space, we see that the interchange of j,
and k, is impossible in PG(3, 2) since in the projec-
tion /, projects into /,.

7. COMMENTS

In conclusion, reference should be made to a paper
by Giovannini and Smith'” which uses some of these
ideas, but in a different way, and to papers of
Shelepin’® who introduces topological ideas and
Betti numbers.

After reading the manuscript of this paper in
June 1970, Professor Biedenharn suggested to me
that,instead of developing the geometrical model and
showing its significance for the physical pattern,one

G. pE B. ROBINSON

could, alternatively, use this pattern explicitly to
motivate the model.

We could seek first to eliminate summation by
assuming in (1.1) that j, j, = j, uniquely. Interpreted
additively, this would imply that there should be just
three points on every line, so that we would be dealing
with a finite projective geometry (med 2). The relation
(I1) then implies that the 6j symbol is mapped on 0 or
1, while (I12)® implies the content of Theorem 2. Since
(I3)® is provable in its physical context,it is natural
that Desargues’ theorem should be provable in
PG(n, 2), provided n > 2. As we have seen, (5.8)
degenerates to (5.9) or (4.3) for n = 2. Dualizing,
we have demonstrated the validity of the diagrams of
Yutsis et al.
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A formal expression 7 in creation and annihilation operators (e.g., the Hamiltonian for a field theory
model) is generally not a densely defined bona fide Hilbert space operator but is usually a densely defined
sesquilinear form; as such it is convenient to consider it as a linear map from a dense domain ®_ of a
Hilbert space @, to a still larger space @, of antilinear functionals on ®_; that is, T:®_ — @, > @,.
We give here the basis of a mathematical structure theory of such generalized operators. The idea which
we explore is that, associated with T, there is a (not necessarily unique) analytic family R of generalized
operators called the resofvent of T. Formally, R; = (4 — 7)1, an equation to which we give more precise
interpretations. The ambiguities in determining R; are associated with the arbitrary adjustments that are
characteristic of renormalization programs. When appropriate conditions are met, we can construct from
R; a new Hilbert space V', and a bona fide operator T (the renormalized T') which is related to 7 by a
formal intertwining equation TzA = AT, where A maps ®_ into a space containing ¥’ . Given several
generalized operators, we outline a procedure by which a subset of these can be renormalized to bona fide
operators while the rest are reinterpreted as new generalized operators in the new Hilbert space. These are
the rudiments of a multiplicity theory. Numerous examples illustrate the methods; in particular, the N6
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sector of the Lee model with arbitrary cutoff (including none) is treated in detail.

I. INTRODUCTION

Quantum field theory or more generally the quantum
theory of physical systems having infinitely many
degrees of freedom is known to be beset with many
mathematical difficulties. One very common source
of such difficulties is the fact that in following the
quantumn mechanical procedures of representing
physical quantities by ‘“‘operators” one is led by
physical necessity to mathematical objects which
strictly speaking are not operators on a Hilbert space.
For example, the quantum field amplitude ¢(x) at a
space-time point x is not an operator; furthermore, if
we take any of the common field theory models such
as the Yukawa model, the A¢* model, or quantum
electrodynamics and construct in terms of the bare
creation and annihilation operators the formal
Hamiltonian, then one does not obtain a bona fide
operator on a Hilbert space. Similar difficulties appear
with the formal operators of quantum statistical
mechanics and solid state theory. The difficulty with
the field amplitude ¢(x) has been somewhat overcome
by considering the field to be an operator valued
generalized function '™#;however, the difficulties with
the other objects have never been fully met. What has
usually been done up to now is to approximate these
objects in some way by bona fide operators, the so-
called cutoff versions of these objects, and then to
study the limiting situation as the cutoffs are removed.
This approach has disadvantages. In the first place,
the cutoff and limiting procedures are quite complex;
no systematic methods are known and each problem
requires its own tricks. In the second place, the
original object often possesses a certain degree of

symmetry such as definite transformation properties
under various physical groups. The final results are
also required to possess definite symmetries but the
cutoff procedure violates these symmetries leaving
one with the problem of recovering it in the limit.
One needs a method which does not violate the
symmetries of the problem.

Concerning the mathematical nature of a formal
operator T of a physical theory, it must not be thought
that it is mathematically ambiguous. What happens
is that though T may not be a densely defined operator
in a Hilbert space J in the usual sense that there is a
dense domain D < J such that T maps D into XK,
it is true nevertheless that in practicaily all cases there
is a dense subspace D < ¥ for which the expectation
values (f, Tg), where f, g € D are well defined. Now
f~— (f, Tg)is an antilinear functional on D, and thus
it is convenient to consider 7' as mapping D into a
space of antilinear functionals on . More precisely,
we shall consider triplets of spaces ®_ < &, < @_,
where @_ is a dense subspace of the Hilbert space @,
and @, is a space of antilinear functionals on ®_.
By a generalized operator T we shall mean a linear
map T7:®_— ®_ and most formal operators of
physics can in fact be easily defined as generalized
operators of this sort. This suggests the mathematical
program of constructing a useful structure theory for
classes of generalized operators. For the class of
generalized operators defined in terms of creation
and annihilation operators, the only extensive
structure theory known is the combinatorial and
diagrammatic approach of perturbation theory. This
approach has been very fruitful in bringing to light
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many difficulties and in solving a few physical prob-
lems. As a structure theory it fails in many respects,
mostly in that one is usually at a loss as to how to
combine the various diagrams to effect a solution to a
given problem. Our approach here will be to give
meaning to the inhomogeneous eigenvalue problem
for T, which is expressed by the formal equation
(A — T)¢ = y. That this is fruitful can be seen from
the difficult but beautiful work of Friedrichs® and the
more recent important works of Glimm®™® and Glimm
and Jaffe.®1% These works use diagrammatic perturba-
tion techniques essentially but the introduction there
of dressing or intertwining operators strongly hints
at an underlying spectral structure, since an inter-
twining operator may be looked upon as one trans-
forming the spectral structure of one operator to that
of another, in the above cases that of the full Hamil-
tonian to that of the free Hamiltonian. The above
mentioned works of Friedrichs and Glimm have been
the inspirational source for the present work.

Now even for a bona fide operator, the eigenvectors
need not lie in Hilbert space. Even keeping this in
mind we find that for generalized operators further
difficulties appear. Thus, take for example the
generalized operator on the space of sequences defined

by
(Ta)() = E ak s
k=1
(Ta), =a,, k21,

where a = (ay, a5, a3, **) is a sequence. Formally
the eigenvalue problem reads

0

> a, = Aay,

k=1

k2>1,

and assuming 4 7 0 we find again formally

a, = Aay,

ak = ao/l, k 2 19
and therefore,

> aofA = ayfA
k=1

Thus A= +£(37 ! are the eigenvalues and
a=(xC Y 1,1,1,--) are the eigenvectors.
Now (3 1)} is a meaningless expression and such
expressions occur abundantly in any formal treatment
of generalized operators. It is usually said that by an
appropriate regularization or renormalization tech-
nique these expressions will be replaced by numbers
which a priori however,can be arbitrary; thus, any
sequence of the form a = («, 1,1, 1, - - -), where « is
an arbitrary complex number,should in some sense be

1 == Z-ao.
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considered a generalized eigenvector of T with eigen-
value «. The question then arises whether one can
describe the precise relationship that these generalized
eigenvectors have to the generalized operator T
without going through the formal intermediate
calculations involving meaningless expressions. The
answer is yes, these vectors can be reached by appro-
priate limits. One learns in elementary quantum
mechanics texts that even though the continuum
eigenfunctions v, of a physical operator A are not
square integrable, there is a sequence of square
integrable functions ¢, such that ¢, — ¢, in some
sense and Ay, —> Ay, in some sense. Likewise, an
element ¢ € @, will be called a generalized eigen-
vector of a generalized operator T if for certain nets
f. € ®_ such that f, — ¢ in an appropriate sense Tf,
appears more and more as a multiple of ¢ again in an
appropriate sense. Even more generally we shall say
that ¢ solves the formal resolvent equation (A — T)¢ =
v if there is a net f, € ®_ such that f, > ¢ and —Tf,
differs from by a vector that appears more and more
as a multiple of ¢. The next question is whether one
can pick from this class of solutions an appropriate
subclass that reflects the mathematical and physical
properties of T. We shall formulate various criteria
for doing this but unfortunately we shall not have a
complete set of criteria; further insight is needed here
either from physics or from a different structure
approach. Having surmounted the above two obstacles,
there still remains in most problems an additional step
before we can say we have a reasonable solution to a
physical problem. In order to conform to the usual
assumptions of quantum mechanics,any generalized
operator describing an observable must somehow be
transformed into a bona fide operator in a Hilbert
space. We shall call this process renormalization and
see how a knowledge of the spectral structure sheds
light on this problem.

The central idea which will emerge from our
investigations is that associated to a generalized
operator T there is a (not necessarily unique) analytic
family of generalized operators R; called the resolvent
of T. Formally R, = (A — T)! but due to the
ambiguities present in working with generalized
operators there are numerous interpretations of the
above expression. We feel that among all such inter-
pretations there are those that are in a sense the best
in that they involve the least deviations from purely
formal calculations.

We introduce two approaches to the construction
of the resolvent. The first may be called the multi-
valued approach as it involves the use of multivalued
linear maps. A multivalued linear map from a vector
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space ¥ to a vector space W is nothing more than a
linear subspace of ¥ x W. It is of particular interest
to consider a generalized operator T:®_— @, as
being the linear subspace {(f, Tf) |fe ®_} < @, x
®, . The closure T of the above subspace in an appro-
priate topology plays an important role,allowing us to
define the generalized eigenvectors of T and to intro-
duce a family R,(T), 4 € C,of multivalued linear maps
called the resolvent relations, which in an appro-
priate sense is given by R,(T) = (A — 7). We now
try to pick linear subspaces R,,one from each R, and
each one defining a single-valued transformation such
that collectively they come as close as possible to
having the properties of a bona fide resolvent of a
bona fide self-adjoint operator. This approach works
well for simple examples but is often too crude in that
the possibilities for R, are too numerous and it is not
clear how to pick the relevant ones. This difficulty is
in part overcome by the second approach,which we
call the orthogonal method since it involves orthog-
onal decompositions of the Hilbert space. Such a
decomposition presents the generalized operator in
terms of a matrix of linear transformations. By
formally expressing the resolvent in terms of these
matrix entries,one obtains an expression which under
appropriate interpretations also leads to resolvents
which,however,now can come from a more restricted
class than can be obtained from the multivalued
approach.

Having obtained a resolvent,we are able to introduce
two methods of renormalization, one of which we
discuss in detail in a separate subsection of Sec. III.
We do not claim that these mathematical renormaliza-
tion methods provide us directly with a physical
interpretation but they do allow us to pass to bona
fide operators and should at least in part embody
importfmt physical notions.

We :evote one section to the problem of several
generalized operators. We show how several general-
ized operators can be treated so that a certain subset
of them are renormalized to bona fide operators
while the remaining ones are appropriately modified
to become new generalized operators so as to still
retain their relationship among themselves and to the
renormalized set. This is a very important situation
physically since a physical theory is most often
described by a set of generalized operators having
various relations among themselves.

Throughout this work we often make use of common
abuses of language. Thus we sometimes use as a name
of a function an expression for its value at an arbitrary
point; for example, we shall sometimes speak of the
function f(x) rather than of the function f or the

3435

function x ~— f(x). Furthermore, we often perpetrate
the fiction that generalized functions have the same
independent variable for an argument as do bona fide
functions; we then use 7(x) as another name for the
generalized function + and write the value of this
generalized function on the test function f by means
of a symbolic integral 7(f) = [ 7(x)f(x) dx. Other
similar transgressions will be engaged in whenever the
exact expressions are too awkward and the context
supplies the necessary clarification.

We shall use the black square symbol m as an
emphatic period which will usually signify the end of
an argument that establishes a certain point.

II. THE ELEMENTARY THEORY OF
GENERALIZED OPERATORS

A. Rigged Hilbert Spaces and
Generalized Operators

We consider pairs (®_, ®,) of complex vector
spaces in which @, is some space of antilinear func-
tionals on @_. It is also useful to introduce the space
@’ the space of all antilinear functionals on ®_. By
definition @, = ®’ . The pairing of ®_ with either
®, or @’ we will denote by (-, -); thus (f, ¢) is the
value of the functional ¢ € @, or ¢ € ®’ on the vector
fed_.

A pair such as the above will be called a rigged
Hilbert space if there is given a linear inclusion
j:®_ < @, such that the sesquilinear form f, g ~—
(f, g) = (f,Jg) has a positive-definite quadratic form
f~—(f.f) and, furthermore, such that if @, is the
Hilbert space which is the completion of ®_ with
respect to (-, ), then for any s e ®, the antilinear
functional f -~ (f,h), fe®D_, isin @, . We thus arrive
at a triple (O_, @y, ®,) of complex vector spaces and
inclusions

i 4,
O <@ D, jj =

such that @_ is a dense subspace of the Hilbert space
®, and for fe®_ and he®, we have (f,j.h)=
(j—f, B). The elements of ®_ we shall call the smooth
vectors and the elements of @, the generalized vectors.
These adjectives may at times be dropped.

We shall denote the triple (®_, @, , j) by the single
letter @ and say that @ is a rigged Hilbert space. We
shall also say that the Hilbert space @, is rigged by
®_ and @_, or that it is rigged by ®. If & is a Hilbert
space then we shall sometimes consider it as the rigged
Hilbert space (¥, &, id).

By an abuse of language we shall henceforth often
drop writing the symbols j, j_, j_; thus we would
write (f, h) = (f, h) for fe O_, he @,.
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The weakt topology W+ on @, is defined by the
pairing of @, with ®_. A basis for the neighborhoods
of zero consists of the sets

U(fl"fzy U 5fn; €)
={¢€®+Il<f;,¢>| < E;i= 1’...’n}a

where f; € ®_. The weak™ topology can, of course,
be restricted to @, and ®_ to define the induced
topologies W+ | ®, and W+ | O_.

The space @_ is W+ dense in @, since given ¢ € O,
and a W+ neighborhood of zero U(f;,- - -, f,; € in
®, we can certainly choose an A€ ®, such that
(fis B) = (f;, $); but since O_ is weakly dense in D,
we can choose a g € ®_ such that

[{fi:8) = {fis Il < e

and then ged¢ + U(fy, **,f,; ). We can thus
approximate any element ¢ € @, by a net f, e ®_
such that f,— ¢ in the W* topology and where
« € A and A is some directed set. Such nets will play an
important role. Note that by passing to subnets we
can always choose the directed set 4 to be the directed
set of W+ neighborhoods of zero in @, ordered by
inclusion. In subsequent discussions we shall, without
any further comment, pass freely from the considera-
tions of arbitrary nets to that of such special nets and
vice versa.

We note that by the above argument the W+
completion of ®, is ®’ . We could,however,choose to
have @, be sequentially W+ complete since every
clement of the sequential W+ completion @2 of @,
can be interpreted as an antilinear functional on ®_.
It is, in fact, very advantageous for many purposes
to have @, be sequentially W+ complete.

We now give some examples of rigged Hilbert
spaces.

Example 1: ®_ = D(R") < D'(R") = ®_, where
D is the space of C* functions of compact support on
R" and 9’ is the space of distributions. The inclusion
is the natural one and the pairing is (f, ¢) = ¢(f),

where f(x) = f(x), the bar denoting the complex
conjugate. Clearly ®, = L2(R").

Example 2: ®_ = §(R") < §'(R") = ®,, where
§ is the Schwartz space of functions on R™ and 8§’
is the space of tempered distributions. The inclusion
is the natural one, the pairing is (f, ¢) = ¢(f), and
D, = L(R").

Example 3: ®_ = d" < d¥ = ®_, where d" is the
space of all n-fold sequences {f; ;. ..}, {;=1,2,""+
which vanish whenever any index is sufficiently large
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and d" is the space of all n-fold sequences. The inclu-
sion is the natural one and the pairing is (f, ¢) =

o= 2ty Siyein®Piyes,- When n =1 we shall
occasionally let the index 7 in f; start with zero rather
than one.

Example 4: Let ®_ be a nuclear space with a con-
tinuous nondegenerate sesquilinear form (-,-), let
@, be ®* the space of continuous antilinear functionals
on @_, and let the inclusion j:®_ < @, be the one
provided by the sesquilinear form; then we have a
rigged Hilbert space @ as defined by Gel’fand and
Vilenkin.1* '

Example 5: Let ®, = (®_,,D,,,/,), x€4, be a
family of rigged Hilbert spaces. We now define
® = @ D,, the direct sum of the family {®,},_,. For
®_ we take the subspace of the algebraic direct sum
@ ®@_, whose elements have all but a finite number of
components zero. For ®, we take the algebraic
direct sum @ @, ,. For j we take the algebraic direct
sum @ j, restricted to ®@_. The pairing is taken to be
(fs &) = Dues > Po)e- One easily shows that @ is a
rigged Hilbert space in which &)= @ P,,, the
Hilbert space direct sum.

Example 6: This is a very involved example which
we write out in detail because the construction is new
and it plays an important role.

Let &, = (D_,,D,,,j,), x4, be a family of
rigged Hilbert spaces; we say {®}, , is an inductive
JSamily if it satisfies the following properties:

(IF1) A is a directed set.

(IF2) If @, € A and § > «, then we have linear
maps k_g,:®_, — ®_g and k;,: @, , — D, such that
the diagram

Ja
(I’—a < q)+a
o]
ip
Dy Dy

is commutative; that is,jsk_g, = k.5, 7, .
(IF3) Fora, 8, ye A and y > B > a,we have the
transitivity relations

k_ysk_pe = K_ye>
Kyyokipe = Kiye-
(IF4) Forfe®_, ¢ ®,,, and § > « we have
<.f’ ¢>a = <k—Baf’ k+ﬁa¢>ﬁ .

Note that this implies that k_z, and k4, are both
inclusions, and subsequently by (IF3) k_,, and k_,,
are both identities.
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(IF5) We finally require that whenever 8 > « the
map (k_p,)':®, @’ defined by (f, (k_y,)$), =
(k_gof. $)p map @,, into @2 , the sequential W+
completion of @_,; that is:

(k_g)' D5 < D2,

We now define a new rigged Hilbert space ® called
the inductive limit ® = _lim ®, of the inductive
family {®,},.4-

For @_ we take _lim @_,, the inductive limit of the
family {®_,},., considered as an inductive family of
complex vector spaces. Specifically, the underlying set
of ®_ is the disjoint union V,_, ®_, modulo the
equivalence relation ~ by which f, ~ g, if there is a
Yy, y2a, y2>p such that k_, f, =k_,g;. Let
S =1[f,] denote the equivalence class of f,e Y @_,.
Note that,for any 8 > «, [f,] = [k_s,f.] by (IF3). If
f=1f), g =1[gs] are in @_, if A and px are two
complex numbers, and if we picka y, y > «, y > 8,
then we can define the linear operation Af + ug by
M + ug = [Ak_, f, + pk_,s85]. This is easily checked
to be well defined by virtue of (IF3) and thus
endows the quotient Y ®_,/~ with a linear structure
to define the complex vector space @_.

We can now define the canonical linear inclusions
k_,:®_, < ®_ by setting k_,f, = [f,] for f,ed_,.
This is in fact an inclusion by (IF4). We can thus
consider each ®_, as a subspace of ®_.

For B > o we easily have k_zk_, = k_;.

For ®, we now take that subspace of ®. each
element of which when restricted to ®_, via the
inclusion k_, is an element of ®¢, . Explicitly, ¢ € ®_
belongs to @, if and only if for every « € 4 the anti-
linear functional f, ~— (k_,f,, ¢), f, € P_,,belongs
to ®2,.

This definition provides us, therefore, with the
canonical linear restrictions r,: @, — ®2,.

We now define linear inclusions k,,:®,, < @, as
follows: Let fe ®_, f = [f,]; let ¢, € D,,, and pick a
Y,y > o,and y > B. We define k¢, by (f, k.. $,) =
(k_,pf35 Kiyabe)y. This is well defined,for,if f;. and 5’
are possibly different choices, then thereisa é, 6 > g,
and 0 > B, such that k_s5f; = k_sp fp; furthermore,
thereisa é’,6' > y, 8’ > 9', and &’ > 4,and we have,
using (IF3) and (IF4),

<k—1ﬁf B> k+ya¢’a>v = <k—6vk—vﬁf;9 ’ k+6yk+yu¢a>a
= (k_spfp> krsaba)s
= <k——6ﬁ’f [ k+aa¢a>a
= Uyp s Kryaby -

Thus, k, ¢, is well defined as an element of ®’, and
we need now show it to be, in fact, an element of @, .
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Now for y > B, y > a,we have,on k_g®_;, (k_,f;,

k+a¢’a> = <k—yﬂf B> k+ya¢‘a>v = <f B> (k—vﬁ)'k+7u¢a)ﬂ , but

kiy b, €®,, and so by (IF5) (k_,p) 'k, . ¢, € Dy,
showing by definition of @, that k¢, € @, . Thus,

k. ,D,., < ®,. Suppose now that kb, =0; this

means, in particular, that k_,f,, k.9, = 0 for all

Ja € @_,;but then by definition of &, , and by (IF4) we

have

0 = <k—afa b k+a¢a> = <k—a¢f;z’ k+aa¢¢>a = <fl > ¢a>¢

for all f, e ®_,,and this implies ¢, = 0,proving that
k., is an inclusion.

It is clear by construction that for # > « we have
k+ﬂak+a = Ryp-

We can now consider the family of linear inclusions
l,=kipj,:®_, < ®,. Since,for 8> «, Lk 4, =1,
we see that the family {/,} defines a linear map
j:@_— @, such that jk_, = [,; namely, take j[f,] =
l.f.- The map j is, in fact, an inclusion,for if jf = 0,
then f= [f,] and 0 =jf =1, f, implies that f, =0
for I, is an inclusion; subsequently f = 0.

We now proceed to show that the triple @ =
(D_, ®,,j) is a rigged Hilbert space.

Consider the quadratic form f-— (f,jf). Let
f= [fa]; then <_f9]f> = (f; Iafu> = <.f, k+aj¢fa> =
K_gafes Kiaafolode = farJafe)a = 0 and this vanishes
if and only if f, =0, that is if and only if f=0.
Thus, the quadratic form is positive definite.

Now, let ®, be the Hilbert space which is the
completion of ®_ with respect to the inner product
g~ (f,8) =(f.jg), and let he®,; then h is
given by a Cauchy sequence 4, € ®_ and we can set
by = [Hpa(m] fOT Byyiyy € @_yq - Comsider now k_gO_,
and pick y(n), y(n) > a(n), and p(n) > fF; then

(k—pfp , h) = lim (k—ﬂfﬁ’jhn>
= lim <k—BfB s k+a(n)ju(n)hna(n)>

= lim <k—1(n)ﬂfﬂ ’ k+v(n)a(n)ja(n)hna(’n))y(n)
n—+w

=lim <fﬂ P (k—v(n)ﬂ)'k+y(n)a(n)j¢(n)hna(n))p .

n—+w

Now this last limit exists for all f; € ®_; since it is
equal to (k_f;, k). By (IF5),

’ . .
(k—v(n)ﬁ) k+y(n)a(n)]a(n)hna(n) € ¢)$ﬁ *

since @9, is W sequentially complete,we see that

this last limit in fact defines an element of ®¢; and so
f~—(f,h) for fe®_ defines an element of @,
concluding the proof that @ is a rigged Hilbert spacem

Let {®,},., be an inductive family of rigged
Hilbert spaces and let ® = _lim®,. Let V be a
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complex vector space and for each « € 4 let there
be given a linear map A,: ¥V — @, such that, for
B> a,k g0, = A There is then a unique map
A:V — @_ such that r,A = A,. This map will also be
denoted by _lim A, and will be called the inductive
limit of the family of maps {A,}.

We define A as follows: Let fe @_, f= [f,], and
let veV; then we set (f,Av) = (f,,Aw),. The
stated properties of A follow readily.

Given a rigged Hilbert space ® by a generalized
operator T,we shall mean any linear map 7 ®_ — @, .
If T'is a generalized operator,then the set of numbers
(g, If ) for f, g € ®_ we shall call the matrix elements
of T and in particular the numbers (f, Tf) we shall
call the expectation values of T.

A generalized operator defines a sesquilinear form
on ®_, namely f, g ~— (f, Tg). The converse is not
necessarily true for, given any sesquilinear form
/. g ~—{f, g} on ®_,we can certainly define a linear
map S:®_ — @’ by Sg: f~—{f, g};but the range of
S need not lie within ®,_. This problem arises when-
ever we perform operations on the matrix elements of
generalized operators to obtain new sesquilinear forms.
Often we want the new object to also be a generalized
operator. This question must involve relations,among
®_,d,,j and the generalized operators, which we
have not investigated. We have not yet made any
regularity assumptions on T nor any topological or
other restrictions on ®_, ®,, and j. Such questions
eventually have to be faced,but we shall get a better
perspective on them only after we further develop the
formalism. In this work we shall usually assume that
the relevant maps are in fact generalized operators
when such is the need. All the circumstances under
which this question will arise will be sufficiently
natural both mathematically and physically that the
assumption will not be unreasonable.

It is now appropriate to point out that there is a
certain ambiguity in defining generalized operators,
namely, we are often able to pass to other rigged
Hilbert spaces without loss of any information about
the original situation. In the first place, we can always
pass to the sequential W+ completion of @, ;s0 assume
@, to be sequentially W+ complete. We may now be
able to find a subspace ¥'_ of @, such that j &_ < ¥_
and such that j_®_ is dense in '¥_ in some topology .
Furthermore, certain functionals in @, may be
extendable from ®_ to¥'_ by virtue of continuity with
respect to T,thus giving rise to a new space ¥, .
Assume, in addition, that ¥'_ < ¥, and that this
forms a new rigged Hilbert space ¥ If T'is continuous
with respect to the topology = on ®@_ and some topol-
ogy 7, on @, then it can be extended to a map
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T:¥_ — @, and if in addition 7¥_ < ¥ ,we have a
new generalized operator from which by virtue of
continuity assumptions the original operator T can be
recovered. One can also pass in another direction.
Suppose we take a subspace ®_ < ®_ such that 6_
is dense in ®_ with respect to some topology r. The
space @, now acquires a new W+ topology induced by
©_ and with respect to this new topology it may not be
sequentially complete; we pass to the sequential
completion thus arriving at a new space O, > @, .
The triple ® = (0_, 0, , j| ©_) can form a new rigged
Hilbert space and if T is continuous with respect to the
topology = on ®_ and some topology 7, on @_, then,
passing to the restriction 7| ®_,we again get a new
generalized operator from which the original general-
ized operator can be recovered. One can combine any
number of such extensions and restrictions and possibly
other similar operations to obtain a whole class of
generalized operators. Now for physical and most
mathematical applications any one of the generalized
operators in this class may be taken as representing the
same situation and thus it becomes reasonable to ask
which among this class is in some way mathematically
natural. We shall not look very deeply into this prob-
lem as it is mathematically subtle but in concrete
situations does not often present any difficulties. We
shall at times,however, give indications of the issues
that it raises. All such problems related to the various
choices of riggings we shall call candidacy problems
since they relate to the choice of a mathematical
candidate for a given situation.

The following are examples of generalized operators.

Example 7: If T®_ < ®_, then T is a densely de-
fined operator in ®, with an invariant domain. If the
rigging is of the Gel’fand-Vilenkin type and T is
essentially self-adjoint or unitary on @_, then there is
a detailed spectral theory for T as is given in Gel'fand
and Vilenkin.

Example 8: Suppose there is a sesquilinear map
M:®_ x ®_— ®_ antilinear in the first variable. If
7€ ®’, then we can define a linear map M, :®_ > O’
by the formula

(g M.f)= (M(f,8), ).

If M®_ < @, then M, defines a generalized opera-
tor. A useful particular case of this in D(R™) = D'(R*)
is the following: Let M(f, g)(x) = f(x)g(x) and let
TeD’; then M,f = fr €D’ and M, is a generalized
operator which can be called multiplication by a
distribution and is a generalization of the familiar
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bona fide operator which is that of multiplication by a
function.

Example 9: In C @ D(R") = C @ D'(R") define
T as

T(fo, (k)
fll)dk

as o
") 2ot Lot
where w(k) = (m* + k?)* and ¢, and m are real
constants. This example is the bare Hamiltonian for

the N® sector of the Lee model in n dimensions
without cutoff.

oK) f(K) — g

Example 10: In C @ D(R) « C @ D'(R) define T
as

T(_ﬁ) ’ _fl(x)) = (_gfl(o)’ _gﬁ)a(x)L

where 8(x) is the Dirac distribution and g a real
constant.

Example 11: In d < d’ define T by

(Tf)o = %ofo +§1fkpk’

(THie = Aefie + fope for k2> 1.

Here the 4,, n=0,1,---,and the p,, k =1,2,-~,
are fixed complex numbers. This example is a discrete
version of Example 9 and will be called the discrete
Lee model. It will prove to be very instructive
since everything can be computed explicitly and it is
sufficiently complicated to exhibit most of the phenom-
ena in which we are interested.

Example 12: All Fock spaces are a direct sum of the
multiparticle subspaces. One of these, the vacuum,
is C which we rig in the manner (C, C, id). All the
others are of the form L%L(R") for 'some #,where
the subscript P denotes that the vectors of this space
have certain specified symmetries under permutations
of the independent variables, said symmetries arising
from physical statistics. We rig these subspaces by
Dp(R™) <« DL(R™) and then rig the Fock space by
taking the direct sum of the resulting family of rigged
multiparticle subspaces.

With Fock space rigged in this way then,as was
pointed out in the introduction, most of the Fock
space “operators’ of quantum field theory, quantum
statistical mechanics, and solid state theory are in
fact generalized operators. Among these are included
the Hamiltonians and Lagrangians for most models,
their densities, Wick polynomials in the free fields at a
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fixed point, and in general any formal normal ordered
expression in creation and annihilation operators with
distribution kernels.

Example 13: Let T be a generalized operator. We
define the map T*:®_— @’ by T*f:g ~— (f, Tg).
If T*®_< @, then T* is a generalized operator
called the dual of T.

If T is a generalized operator and T* = T, then we
say T is symmetric. In terms of matrix elements this
means that (g, If) = (f, Tg).

If T is a generalized operator and (f, If) > 0 for
all fe ®_, then we say T is positive. Note that if T is
positive, then T must be symmetric.

Example 14: Let ¢ € @, v € @’ ;then we define the
generalized operator |¢) (y| by |¢) (y| f= (f, v)¢.

The set of all generalized operators on a given
rigged Hilbert space clearly forms a complex vector
space in the usual manner. We shall place the weak
topology on this space; thus a basis for the neighbor-
hoods of zero is given by
U(fnfe, e ,fn;glxgza P s €)

={T“<f;‘1Tgi>|<€ai=1;”‘:”}’

where f;, g;€®_. Furthermore, when speaking of
any notion relating to generalized operators,we shall,
unless otherwise stated, mean the weak notion; thus,
for example, a family 7(1), A€ C, of generalized
operators is analytic in a domain D if every matrix
element (f, T(A)g) is analytic in D.

B. Linear Relations

It turns out that it is necessary to study multivalued
linear maps, which we call linear relations.

Let ¥ and W be two complex vector spaces then we
define a linear relation Q from ¥ to W to be map from
V to the power set of W, Q:V — F(W) satisfying the
following three conditions:

(LR1) If ¢, y € V,then Q(¢ + v) @ Qd + Qp.

(LR2) If 2 # 0 is a complex number and y e ¥,
then Q(Ayp) = 1Qyp.

(LR3) Q0 £ o,where @ is the empty set.

Consider now the set V' X W and the subset
I'(Q) © ¥V x W called the graph of @ and defined by

I'(@) = {(y,¥) | ¥’ € Qy}.

Now conditions (LR1), (LR2), and (LR3) imply
that I'(Q) is a linear subspace of ¥ x W considered
as a vector space in the usual componentwise manner.



3440

To see this, let (¢, ¢'), (v, ¥") € I'(Q);then
Qp+y)> A+ Qya ¢’ + v,

which shows that (¢ + v, ¢’ + ¢") € ['(Q). Further-
more, let (y,4)el'(Q) and 20 be a complex
number; then Q(Ay) = AQy 5 Ay’, which shows that
(Ay, Ay") e ['(Q); lastly, Q0 # & and

Q0 = (0 — 0) > Q0 + Q(—0) = Q0 — Q030

shows that (0, 0) e I'(Q)=m
Conversely, given any linear subspace L < V' x W,
we construct the map

R(L):V—>F(W) by R(Lyp={ |, ¢)eL}
To show that R(L) is a linear relation,we have first

R(LY(P + )
={n|(¢+y,Mel}> {¢'| (¢ ¢)eL}
+ {¥' | (v, ¥) e L} = R(L)$ + R(L)y,

so (LR1) is satisfied. Furthermore, assume 4 0 is a
complex number;then

RLYAy) = {¢' | Ay, v) e L} = {¢' | (p, 1/Ap") € L}
= My'| (v, ¢') € L} = AR(L)y,

so (LR2) is satisfied; lastly, (0,0) € L shows that
0 € R(L)0,s0 R(L)0 = & and (LR3) is satisfied.

Itisimmediate that R(I’(Q)) = Q and N'(R(L)) = L,
and thus linear relations are in 1-to-1 correspondence
with linear subspaces of ¥ x W. This is very helpful
in many considerations. Two facts that follow
immediately from this are that Q0 is a linear subspace
of W and that if v’ € Qyp, then Qy = v’ + Q0.

The set of all linear relations from ¥ to W we shall
denote by M(V, W)and in the case ¥ = W by M(V).

If Q is a linear relation, we define the domain of Q
to be D@ ={ypeV|Qp# z}. The domain is
clearly a linear subspace of V since it is the canonical
projection of I'(Q) onto V.

If @, and @, are linear relations and I'(Q,) < I"(Q,),
then we say that Q, is a restriction of Q, and that Q, is
an extension of Q,, and we express this by Q, < @, or
&, > Q,. The relation Q; < Q, is equivalent to
Qyc QupforallyeV.

A restriction or an extension is called an operator
restriction or an operator extension if it is in fact an
operator, that is,if it is single valued on its domain.

If @, and Q, are linear relations, then we define the
linear relation Q, 4+ Q, by

(Q; + Q)y = Qp + Qp.

One easily shows that @, + Q, is a linear relation.
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If Q is a linear relation and 4 a complex number,
define the linear relation AQ by (AQ)y = A(Qyp).

If QeM(V,W) and Re M(W,Z), we define
RQeM(V,Z) by Ry = R(Qyp) = U, RY'.

Of particular interest for function theory of general-
ized operators is the case when ¥ = W, for then RQ is
again in M(V).

If Qe M(V, W),define Q-1 € M(W, V) by

L@ = {(v', v) | v € Qy},

which is clearly a linear subspace of W x V. Equiv-
alently @0 = {y | € Qy} for w € W.
Let now Q,€ M(V, W), a € A,be a family of linear

relations. We define V,,E 4 Q, e M(V, W) by setting

IV Q,) = VI(Q,), where the last set is the linear
span of the family of subspaces I'(Q,).
If9, < Q,Q, = Q, and if y € D(Q, — Q,),we have

@ -Qy=Qyp—-Qy<Qp—-Qp < Q0

and if, on the other hand, p ¢ D(Q, — Q,), then
(@, — &)y = @ < Q0. This observation leads to a
new notion.

Suppose X and Q are two linear relations such that,
for all y, Xy < QO; then we shall say that X is a
counter of Q. This terminology is introduced since as
will be seen later certain so-called counterterms which
occur in the formal function theory of physical
“operators” arise in this way. As we saw above, any
two restrictions of the same linear relation differ by a
counter on the intersection of their domains, and
conversely, if § < Q and JX is a counter of Q, then
F4+ 3 < a.

It is useful now to introduce certain topological
considerations. We assume that ¥ and W are both
topological vector spaces and we endow V' X W with
the product topology.

We say that @ € M(V, W)is closed if its graph I'(Q)
is closed. In terms of limits this means that if y, €
D(Q) is a convergent net, y,— y € ¥V, and if there
exist ¢, € Qy, such that ¢, — " € W, then 3’ € Qy.

If Qe M(V, W), then it has a canonical closed
extension @ called the closure of Q and is defined by
I'(@) = I'(Q). In terms of limits, we have that ¢’ € Qy
if and only if there are convergent nets y, — vy in V
and y, — v’ in W such that y, € Qyp, . The closure is in
a sense the best attempt to extend a linear relation by
topological means.

If ¥, Q are linear relations, we say that § is a
version of Q if § = @; this is equivalent to I'(F)
I'(@) = T(Q) and is thus equivalent to T'(F) < T(Q)
which means that ¥ is also a version of Q. Version of
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is a pseudo-order, that is,it is reflexive and transitive.
The relation of being a version of each other is an
equivalence relation since it is the same as having
equal closures. Among closed relations, version of is in
fact a partial order.

Our next topological construction has to do with
limits of linear relations. Let Q;, & € X,be a family of
linear relations and let N be a set of nets in X all
defined on the same directed set 4. We define the
linear relation @ = limy Q, by taking I'(Q) to be the
set of all limit points of nets y, € I'(Q,,), where &, is a
net in N.

Concerning this limit procedure, we want to make
the following remarks. Suppose the net of neighbor-
hoods of zero of ¥V X W admits a cofinal subnet
indexed by 4, say {U,}; then we claim that lim, Q, =
limy @;. The inclusion lim,, @, < limy @, is obvious
and we need prove only the opposite inclusion. Let
Py € F(@ga) and 7, — 7; then there are points y, €
I'(Q,,) such that y, — 7,€ U, ,but since {U,} is
cofinal, we see that limy,=limy, =% so y¢
lim Q.. Precisely the same reasoning also shows that
lim @, is closed and so in the case that the directed
set 4 is “large enough” we have limy Q = limy @, =

limy, @,.
Because the map (y,y)~— (@, )V X W—
W x V is continuous, we have that

—1
(lim ag) = lim 95~
N N

Let now T:®_— @, be a generalized operator.
Since j is an inclusion of ®_ into @, we can view T as
an operator from @, to ®,_ defined on a domain
D(T) = ®_. Finally, we view T as a linear relation in
M(®,). Since @_ is endowed with the W+ topology,it
becomes meaningful to take the closure T of 7. This
closure will in general be multivalued,but it is an
object of great interest. For rigged Hilbert spaces we
are thus interested in M(®,) and particularly in the
closed relations.

Let Qe M(®,); we call a restriction of Q a g-
restriction if its domain is contained in ®_ and if itis
maximal with respect to this property. If in addition
we require the g-restriction to be an operator restric-
tion, again imposing among| such restrictions the
condition of maximality,then we speak of g-operator
restrictions. The g-operator restrictions of Q are those
that come closest to being generalized operators; they
will be generalized operators if their domain coincides
with @_. We shall also speak of g-versions and g-
operator versions,meaning that we first pass to @ and
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then take restrictions. We shall also consider addi-
tional properties, such as symmetry, that restrictions
and operator restrictions must satisfy. It is the imposi-
tion of these additional properties that provides
constraints that are more severe than could be obtained
from weak topologies alone.

C. Orthogonal Projections

Let @ be a rigged Hilbert space and let L be a Wt
closed subspace of O, . We are interested in the case
that L N @_ has L for its W+ closure and furthermore
that no element of L vanishes on all of L N ®_. In
this case we define 7, , the orthogonal projection onto L,
to be a linear relation on @, given by requiring 7y
to be that element of L, if it exists, which coincides
with v on L N®_; namely, (f, 7, y) = (f,y) for
f€L NO_. Note that if =y exists,then it is unique
and furthermore L is contained in the domain of =,
and mj, restricted to L is the identity. We have
ni =7y,

If L is finite dimensional,then L < ®_ and any
finite dimensional subspace of ®_ satisfies our
hypotheses above. Let L be generated by f;, -, f,
all linearly independent; then 7, is defined on all of @,
and is given explicitly by the formula

LY =.zlfz‘Mi:i<fJ' P
t,j=

where M,; is the inverse of the matrix (f;, f;).

Let & be any cofinal subset of the directed set of all
finite~-dimensional subspaces of ®_. Now for any
p €@, the net {mpy} . converges to y in the W+
topology: 7xy — . In fact if U(g,, -+ ,g,5€) is a
W+ neighborhood of zero in @, and if F is such that
gi€Fithenmpy e U(gy, * **, g, €+ v

Let I be the identity linear relation on @_; that is,
Iy = {y}. If = is an orthogonal projection, then
I — 7 is an idempotent, (I — #;)? = I — =, and
a map of some interest,though it is not necessarily an
orthogonal projection. In certain special cases it may,

- however, be an orthogonal projection.

Suppose that @ is a direct sum @, ® ®, and let
L=, ®0. Then L satisfies our hypotheses and =,
exists and is given by m,y; ® v, = v, ® 0. Further-
more, 0 ® D, also satisfies our hypotheses and the
orthogonal projection onto it is [ — 7y .

Let T be a generalized operator and 7, an orthog-
onal projection. Associated with T are also the
following maps: 7wy Ty, w T — wy), (I — wp) Ty,
and (I — 7w )T — 77). In case @ is a direct sum
D, ® D, ,then, if we ‘set =, = T, 000 T2 = Toga,,
we have m, = I — 7,. We can now write T in the
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form of a matrix

T= (Tll

T 12)
T21 T22 ’

Ty =mTm | Dyy. |

where

One gains from the above considerations only if L
is somehow specifically related to T and this means
that we should single out certain special subspaces.
Now in all cases we have the inclusions

() w Ty, < w Tmrp,

(ii) 7w, T(I — wp)®, < 7@, .

The special cases hold when these inclusions are
strict, that is, an inequality holds. Heuristically
speaking,if (i) is a strict inequality,then part of the
“singular” nature of T is expressed in either the off-
diagonal elements or in the other diagonal element
(I — m)TU — mz). A strict inequality for (i) is to
be considered as a generalization of T being diagonal.
Suppose now L to be finite dimensional; then

Ty, is single valued and defined on all of @, while
wTmy, also defined on all of ®,, may be multi-
valued. A measure of this multivaluedness is given by
the dimension of 7, 70. Among all L of a fixed dimen-
sion there are those for which the dimension of
7,70 is minimum and these are especially singled out.

Likewise, among all the finite-dimensional L of a
fixed dimension those are specially singled out for
which the dimension of #»;T(I — =)@, is minimum.

We shall not develop here the theory of special
subspaces such as the above to any great extent but
we shall use such considerations in various examples.

As an illustration consider the discrete Lee model
with an infinite number of p, different from zero. We
shall see in the next section that

70 = {(«,0,0, - )| « € C}

and so for 7;T0 to be zero dimensional for a finite-
dimensional F we must have the vector

eO=(l;03Oa””0,°'.)

be orthogonal to F. The subspace generated by all
such F is {f € d | f, = 0} and this is in fact an orthog-
onal subspace of ®_. Thus the decomposition
® = C @ ®,, where ®,, = {p ed’ | y, = O} is specif-
ically adapted to 7.

Assume now for convenience that all the 1, are
different and none of p, vanish. Let

P=(O;P19P29“'apk"")

and let ¢, = (0;0,---,0,1,0, - - -),where the 1 is in
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the kth place. We have
T= 20/17. len) <enl + leo) {p] + ) <eql.

Let F be a finite-dimensional subspace of d and con-
sider

myT(I — mg) = wgzn lew(eal (I — 1)

+ 7pleo)(pl (I — 7p)

+ 7p lp) el (I — 7 p).
We note that if Fis generated by a finite number of the
e, k21, then wyT(I — wz)®, is one dimensional
and a tedious argument shows that these are the anly
subspaces for which this is true and that for no
subspace is this space zero dimensional. Thus, these
particular subspaces are singled out. These subspaces

form a cofinal set in the set of all finite-dimensional
subspaces of {fed|f, = 0}.

D. Elementary Function Theory of
Generalized Operators

Here we develop only the function theory dealing
with simple expressions, particularly those involving
products sums and inverses. A deeper version of
function theory will come only after the development
of a structure theory.

The basic idea here is to use the closures of the
generalized operators, manipulate with the linear
relations so obtained according to the definitions
introduced in the last section, and then take a g-
operator version of the result as the answer. Which
g-operator version is appropriate to take must be
decided by other considerations.

The simplest example of this is that of passing from
the generalized operator T to any of its g-operator
versions; furthermore, if 7'is symmetric, we may want
to restrict ourselves only to the symmetric g-operator
versions.

A slightly more complicated example is that of
interpreting the product TS of two generalized
operators to be any of the g-operator versions of 7.5.
Now in formally defining 7S one often runs into
certain undefined divergent expressions which are
removed by appropriate counter terms. One may then
consider the formal product T'S as a version of 7.S
with divergent coefficients and this differs from the
finite version by a counter with divergent coefficients.
All other finite versions then differ by finite counters,
that is,generalized operators with values in T50.

To illustrate the above ideas, consider the discrete
Lee model

T:f (lofo + ? Jepis s M + fopes - )
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Let a net f, — p in the W+ topology; then (f,), —> ¥n,

n>0, and thus /1k(f O + (f;)oPk —~ L + YoPes
k > 1. What are the possible limits of

Mo+ 2 (sl

There are two cases,depending on whether only a
finite number of the p, are different from zero or not.
In the first case, the vector p = (0, py, pg, - * *) € djand
we have

Ao fdo + ; (Frpe = Aot + g YiPr>

in the second case, p ¢ d,and by choosing the net f,
appropriately we can make the sum approach any
complex value. Thus, for p € d, T is continuous and T
is an operator

Ty = {(}*o% + ; VePrs s MW+ Woprs )}:
where w ed’. For p ¢ d, T is not continuous and
Ty = {(«; -

where p e d’.
For p ¢ d, a g-operator version of T is thus given by

',lk‘/’k‘i‘%Pka"')I“E Ci,

S (O‘oﬂ) + ga’kfk; o S + foprs )

and f € d and «, and o, are complex numbers. Now the
dual of this version is

S (aofo + ?f—ﬂcfks e Mt o )

and the dual of T is obtained by the change A, ~> 4,
n >0 and p, ~~— p,. Thus, in order to preserve the
duality properties as much as possible, an appropriate
choice for «,, n > 0,may be g, = p;, k > 1 and «,
arbitrary. If in addition 4,, n > 0, and p,, k > 1,
are real,then T'is symmetric and we should then restrict
oy to be real. All symmetric g-operator versions of
T are thus obtained by a change of 4,, still remaining
real.

Let us now consider products. In the case p ed,
TTy is seen to be

T2y ={ (%0 + 13 vuen + 3 1w

+ 21: P:§ ce Aoy + AeWoPr + AoWopy,

+ (rn)en )
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and since in this case again only finite sums are

involved, we have TT=IT and is thus an operator.
In the case p ¢ d, we have

TTy
= {(a;_' Tt l;%'l’k + Awopy + By ) | «, pe C}
and since no infinite sums are involved, we have

TT = TT. A g-operator version of TT is given by
[ (%fo + zl:“kfk; s Mefe + Mafopr

+ (Bofo+ 28 oo )-

The dual of this version is
fo— (aofo + ;ikﬁkfk + Bo; fus s Mk
+ fody, + (; f-)lfl)ﬁk: " )

Thus, again to preserve duality properties, it may be
appropriate to take a, = A.p, + fBop;, and B, = up,
with o, fy, and y arbitrary; in particular, if T is
symmetric, then in order to preserve symmetry we
must take o, and p real.

In formally computing T2in the case p ¢ d,we would
come across the term f > p? in (T%),. This term is
divergent in case p ¢/ and so we introduce the

counter K:®_ — TT0, K:f ~—> (fy; 0,0, --) and we
now have

(T tormas — (3 pK of s (A%fo + 43
+ ; Y N SN lecfk + AkfoPk

+ dfops + (3 puf) e ).

which is a nondivergent version of TT. This corre-
sponds to the previous versions by the choice §, = 4,,
®y = A2, and p = 1. We see that the most general
g-operator version of T7 contains more adjustments
than is absolutely necessary but whether to make these
or not must be decided by other considerations. We
note here, however, that

T_f'l’ = {(“2 o, M + folwpr + Aofopr

4 (i;mfl),)k,...)

gives rise to symmetric g-operator versions for which
Bo=4, and =1 and contain only the minimal
adjustments necessary.

aeC:
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It should be pointed out that elementary function
theory allows considerable latitude of interpretation.
This is desirable since formal expressions involving
generalized operators must often be taken very loosely.
Thus, even the equality 7 = S may be taken now in
the very loose sense that a g-operator version of T
equals a g-operator version of S. In particular,
TS — ST =0 can be interpreted as meaning that
T3 — 3T has 0 restricted to ®_ as a version; this is
the loosest sense of the expression. For the product of
three generalized operators TSR, the loosest interpre-

tation is a g-operator version of S(TR) v (ST)R. The
loosest interpretation of (d/dt)T(t), where T(t)is a one-
parameter family of generalized operators, is that
(d/dt)T(t) is a g-operator version of

lim (W)[T(t + k) — T(1)]

as #— 0. Of course, one need not take the loosest
interpretation in all cases,and sometimes a more
stringent interpretation may be more to the point,
such as in the example above where an interpretation
of T?as a g-operator restriction of 7 did not involve
the possibly superfluous adjustments. In any case, any
interpretation of expressions in generalized operators
that involves manipulations of multivalued maps and
then a passage to an appropriate single -valued
restriction we shall call the multivalued approach. The
multivalued methods do not by themselves lead to
very deep results, but they provide very necessary
material which can then be treated by more sophisti-
cated methods,

E. Elementary Theory of Subtractions

In the previous section we gave an interpretation
of the formal product of several generalized operators;
namely we take any g-operator version of certain
multivalued combinations of the closures of the fac-
tors. We now describe certain more stringent interpre-
tations that can reflect better the specific properties
of the factors. Consider therefore a formal product
T,T,- -+ Ty. We first want to replace each factor T;
by m; Tiwg,, where J; and G; are finite-dimensional
subspaces of ®_. Let §; and S; be cofinal sets of
finite-dimensional subspaces of ®_ and define an
order on §; X S; by (J, G) > (J', @) if and only if
J>J and G > G'. Let F; be any cofinal subset
of & x G;; then (T)g, = m;(T)mg,— T weakly,
where F, = (J;, G;) € F,. Consider now the product
(T)g, " (Tw)p, and let F be a cofinal subset of
F, X +++ X &, where the last space is ordered com-
ponentwise. In general the product has no limit on &
but we can modify each product by a term Kz, Fe &,

GEORGE SVETLICHNY

where K is a single-valued counter of some multi-
valued interpretation of 7 - - - T,. We are then inter-
ested in the limit

lim [(T)p, * * (Tw)ry + KF]
Fe¥F

and this affords an interpretation of the product if the
limit exists. This interpretation of course depends on
the choice of ¥ and K but if these are obtained from
considerations relating to the specific properties of the
factors, the interpretations so obtained can be more
limited than those obtained from the loosest multi-
valued methods and more relevant to the problem at
hand. We shall call the above interpretation and
modifications of it the subtracted product.

As an example let us compute 7% where 7 is the
symmetric discrete Lee model. Let § be {G,},....,
where G, is the finite-dimensional subspace of d
generated by {e,,e;, - ,e,}. We consider the
expression Tmg T + K,, where K, is a symmetric
single - valued counter of TT, namely K,:f~—
(%,.f25 0,0, - --). We have

Tra,T 4 Kyif (84 3 ot + ) fo
1
+ 2 ; Prfe + g Aebifis s on,k}“:fk

+ 0n,klkpkf0 + P (lofo + z szz) s " '),
where !
O,.=1 if k<n
=0 if k>n.

Thus, if we pick «, = « — 3 p2,the limit converges
and gives as an interpretation of 72 the transformation

Sfo— ((1(2) + ) fo + lo?(Pk + hpdfis )'Ichk

+ hefo+ pu(iofo + 3 pzf,), ):

We now turn to certain constructions which we call
analytic subtractions. Let {f,(A)},., be a net of
functions each analytic in 4 in a fixed domain D. We
say that the net converges with subtractions in D if
there is a net of polynomials P,(4) such that

lim [f(4) + P,(A)]
acd

converges pointwise to an analytic function in D. We
call the net P, the net of subtractions. Let n, be the
order of P,. If Q, is another net of subtractions and
m, is the order of Q,, then we say that {Q,} has fewer
subtractions than {P,} if m, < n, and lim m,/n, = 0,
where we interpret 0/0 as 0. If », is bounded, then we
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say that P, has a finite number of subtractions. We
say that P, is canonical if P, is minus a first part
of the Taylor expansion of f, about some point 4,;
that is,

P,(3) = —(f(A) + (A — )12

++ (A' - ,la)"afy‘a)(la)/na!)‘
In most practical cases where subtracted limits areused,
the weaker the subtraction the more desirable it is;
in particular, if a finite number of subtractions can be
used, then it is desirable to have n, bounded by the
least possible number.

One common way in which analytic subtractions
are used is in interpreting | f,(A)u(dx), where A ~—
f.(%) is a family of functions,each analytic in a fixed
domain D,and x is a point in a measure space X
equipped with a measure u. If A is the set of all
measurable subsets a = X such that

.mm=fﬁumwm

exists as an analytic function in D and if {J ., « = X,
then, even if | f,(A)u(dx) does not exist, one can
interpret it as the subtracted limit of £,(1). An example
of the above is of course the Mittag-Leffler expansion
for a meromorphic function. Let r; be a sequence of
complex numbers and let 4; be a sequence of complex
numbers with co as the only accumulation point; then
the sum > r,/(A — 4;) need not converge but one

can pick a sequence of integers n; such that

0

2 (AA) (A — 2)

i=1

does converge and is in fact a canonical subtracted
sum in the sense defined above. A similar interpreta-
tion can be assigned to the integral g(1) f p(dx)/
(A — x)g(x), where u(dx) is a measure on R and g is
an entire function; this is a subtracted interpretation
of | u(dx)/(%. — x) which need not converge.

As a matter of notation we shall use the tilde ~ in
the form

lin, 3, and f

to denote subtracted interpretations whenever we do
not wish to explicitly exhibit the subtractions involved.
Thus one interpretation of

8

SriG— 1) is 3 GAYRIG~ A)

but of course others are also possible.
Analytic subtractions can likewise be applied
whenever we are dealing with a product of generalized
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operators when at least one factor is an analytic
generalized operator-valued function; for example,
STQ(A)R. We again introduce finite-dimensional
projections and thus consider the product

S5 Tr,QDr, Ry,

but for the added term we take a polynomial Pr(4),
that is,Pr(1) = 3 7% AP, ., where the P;  are gener-

alized operators. Thus, an interpretation of the
product is

lim [Sp, Tr,Q(VDr Rp, + Pr(D)].
Fe§F

As before,various procedures and modifications are
possible, but these must be adapted to the specific
situation at hand. We adopt the same terminology
here as for subtracted limits of functions.

Analytic subtractions is one of the most powerful
tools available, and its versatility will be demon-
strated in subsequent examples.

F. Elementary Spectral Theory of
Generalized Operators

In this section we give sense to the formal equations
(T—2¢$ =0 and (T — )¢ = y for a generalized
operator T. We develop the theory by first giving
several equivalent definitions of the generalized
eigenvectors of a generalized operator. The first one
in terms of limits is the most intuitive but the subse-
quent ones are more amenable to study and will
eventually provide deeper insights into the structure
of generalized operators.

Let T be a generalized operator on a rigged Hilbert
space ®. We want to generalize the notion of eigen-
vectors of an operator to that of generalized eigen-
vectors of a generalized operator. It is convenient to
break this definition into two parts.

A generalized vector ¢ € @, is said to belong to the
generalized null space N(T) of T if,given any W+
neighborhood U of 0e®,,there exists a smooth
vector f; € @_ such that ¢ — fy e Uand Tf, e U.

A generalized vector ¢ € @, is said to belong to
>’ (T) if, given any W* neighborhood U of 0 € ®,,
there exists a smooth vector fi; € ®_ and a complex
number uy suchthat ¢ — fy e Uand ¢ — uy, Tf, € U.

A generalized vector ¢ € @, is said to be a general-
ized eigenvector of T if either ¢ € N(T) or ¢ € 3’ (T).
We define 3 (7) = N(T) U X' (T). We note that if
$€> (T)and Ae C, then A € (T) and thus the
set > (7)is trivially too large in that for most purposes
it is necessary to consider only a single representative
from every ray {i¢; A # 0} and disregard the rest.
As will become clear soon, the resulting set is still too
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large and certain subsets will become relevant. The
freedom in choosing both the ray representatives and
these further subsets corresponds in part to the freedom
in making certain arbitrary numerical assignments in
conventional renormalization theory.

The W+ neighborhoods of 0 € @, form a directed
set and so for ¢ € Y (T') the possible families {fy;}
form nets of smooth vectors which we call the approxi-
mating nets of vectors; likewise, if ¢ e’ (T),the
possible families of numbers {u;} form nets of
complex numbers called the approximating nets of
spectral reciprocals. Let ¢ € 3’ (T) and {uy} be any
approximating net of spectral reciprocals and let u be
any accumulation point of the net in C U {co}.
Since € U {0} is compact, we see that u always
exists. We also see that by passing to approximating
subnets we can achieve u to be lim uy; for some other
approximating net {u;}. From now on we assume
that we have picked {fy} such that u = lim uy
exists in C U {oo}. The set of all such limits for all
possible approximating nets we shall call the reciprocal
spectral range of ¢. The reciprocal spectral range is
clearly a closed set.

We see that we can now rephrase the above defini-
tions into the following: ¢ & N(T) if and only if
0eTé; €’ (T)and p is in the reciprocal spectral
range if and only if ¢ € (lim 6T)¢ as o — u, where
o — u by means of nets indexed by the W+ neighbor-
hoods of zero in @_; but this implies that we can
rephrase the condition further to read ¢ € (lim oT)¢
as o — u. This last form admits of further analysis.
If p % 0, u % oo,we can rephrase it to ¢ € uTp,which
is equivalent to (1/u)¢ € Td. If u = o and fy; — ¢,
¢ — puyTfy —0, then 1/uyd — Tfy —0 also and
since 1/uyd — 0 we see that Tf; — 0 and ¢ € N(T);
thus the case u = oo does not lead to any new gener-
alized eigenvectors. If u = O,then we keep the con-
dition ¢ € (lim oT)¢$ as o — u.

Before proceeding with the study of generalized
eigenvectors, it becomes necessary to point out
certain features. This is best done with an example,so
consider the discrete Lee model again.

We have calculated T in the last section and we
reproduce the results:

For p ed,
Ty = {(lo’l’o + ;Pk'l’lé C A + Wopks )}
and,for p ¢d,

TyJ:{(“;"'aﬂ-k"/’k‘*"PoPm"')l“EC}-
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Also its clear that lim ¢T as ¢ — 0 is given by:
for ped,

limoT = 0,
a0
for p ¢ d,
(lim aT)y) = {(«;0,0," ") |a e C}.
o0

From our rephrasing of the definitions the computa-
tion of X (T) is now entirely straightforward. The
results are the following. (We single out only a
single representative from each ray.)

For p €d the only possible values of A = u~1 are
first of all those which satisfy the equation

l_zo";i’:/(l—}*k)=0

and those A, for which p, = 0. In the first case, the
eigenvector is (1;-+-, p /(A — 4., ) and in the
second case itis {(0;0,-+-,0,1,0,-- ), where the 1
occupies the kth place. Of course both situations
may hold simultaneously,in which case any linear
combination of the two eigenvectors is also an eigen-
vector with the same eigenvalue A.

For p ¢ d any value of 1 is allowed. If oo 5% 4 % 4,,
the eigenvectoris (1; -+, p/(A — 4), -+ ). If A = 4,
and p, # 0,the eigenvector is (0;0,---,0,1,0,--+),
where the 1 is in the kth place. If 4 = 4, and p, = 0,
any linear combination of the above two eigenvectors
are allowed. If 1 = oo, the eigenvector is (1; 0,0, - - ).

Now the case p €d is entirely understandable and
the results coincide with the usual ones of bona-fide
spectral analysis.

The case p ¢ d presents several difficulties. In the
first place we seemingly have too many eigenvectors
for there is no restriction on 1 and any complex number
will do. Now if p ¢ d but the sum

© 2
P
N=)Y"""+< o
@) g A=
for some 4, then this sum converges for all 1 5 4,,and
a straightforward formal solution to the eigenvalue
problem would yield the restriction
__Pi
A~ 2y — =0,
0 12 A—2,
which is the restriction one would “normally” take.
Our theory so far does not give any method for
arriving at such restrictions.
Now if I(4) is divergent, consider the effect of

introducing a cutoff 2 into p:p, = ph,, where

0<h <1 and where I,(2) =23 (p2h2)/(A — 4) is
convergent. For simplicity, take p, and 4, real,
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pr #0,and 4y < A, <A < -+, As hy— 1 we see
that the eigenvalues approach from above the values
A, except for the lowest one which moves down to
— o0. The corresponding eigenvectors approach

Pm

except for the lowest one which approaches (1; 0,
0, ).

Our second difficulty now is whether sense can be
made out of singular behavior under cutoff limits.

We will eventually recognize that these problems
are related but for now we briefly discuss them
separately.

The restriction 2 — A, — I(4) for p ¢ d involves an
infinite sum. An infinite sum is not really a sum and
without some external reasoning we are not justified
in taking any particular version of it, so we should not
at this point be surprised that these sums admit of
arbitrary definition. In the same vein, consider the
case when I(7) is divergent but

2

1) —10) =23 7=

is convergent, that is,when subtracted sum is appro-
priate. Such aninterpretation of an infinite sum may
come from physical considerations imposing possibly
now the restriction

Py

A=Ay — A ——F—— =
’ Zm—ma

but such an interpretation is again external.
We now consider the second problem; we have

lim(l;"', Pr , , Pm ,)
Ao A— 12, A=A,
=(19 ,Pk’ " pm b )’
0 A — A,

but also

A—2
lim "(1 o o Bm )
ik P A— 12, A—1,

=(0;0’...,0’1’0’...)’

which is likewise a legitimate limit since we do not
usually distinguish between multiples of the same
vector. This last vector actually lies in > (T) with
A = 2. The trouble here is that the original vector in
the limit had to *““diverge on a set of positive measure”
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and the only limit which can exist is one in which this
divergence has been normalized. We note that in this
case,even though the limit eigenvector ¢ is in fact
smooth,we do not have T¢ = 4,4, again pointing to
the fact that for elementary spectral theory it is the
closure T that plays the important role.

A way out of these difficulties will be hinted at in
the last part of this section where we combine ele-
mentary spectral and function theory with certain
considerations of analyticity. Before proceeding with
this, we must, however, recast our definition of Y (7)
into a still more useful form.

We now introduce the number 4 = 1/u called the
spectral value or the eigenvalue, where we are con-
sidering u € C U {00} to be in the reciprocal spectral
range of some generalized eigenvector. For ¢ € N(T),
we shall take by definition 4 = 0. We can now re-
phrase our definition of > (T) as follows: If 1 # o0,
then ¢ € > (T) if and only if 0 (A — T)¢, and if
A= oo,thend € Y (T)ifand onlyif0 € lim (I — uT)¢
as u — 0, where the limit is taken over nets converging
to zero and indexed by the W* neighborhoods of zero
ind,.

The first part of this rephrasing is obvious; we prove
the second. Suppose 0 € lim (I — uT)é as u — 0; then
by the nature of the indexing set for the convergent
nets we have that O elim (I — uT)¢ as u— 0, but
this is the same as saying there are approximating nets
Jv—¢, uy— 0 such that (I — uyT)fy; =0 and
s0 ¢ — upTfy >0 and ¢ € D' (T) with 4 = oo;
conversely, if ¢ € X' (T) with 2 = oo, then the above
reasoning proceeds backwards to the conclusion
Oelim (I — uT)d as u— 0.

The final version of our definition is the following:
$e (T)and 1 5# oo if and only if ¢ € (AT — T)-20;
$€> (T)and 2 = o if and only if

lim A(AI — T)0,

pelim(l — uT) 0 =
u-0 A0
where the limit is taken over convergent nets indexed
by the W* neighborhood of zero in @, . The second
half of the above contention follows from the fact that
(limy Q)™ = limy Q7.
We now define the relations

R = (A = T),
8o(T) =lim AR «(T),
A=

where the limit is taken over converging nets indexed
by the W+ neighborhoods of zero in ®,; 8§_(T) is
therefore closed as is R,(T). The relation R is called
the resolvent relation.
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We also define

A

T 3D =8,

and call Y, (T) the space of generalized eigenvectors

with eigenvalue 1, or more briefly, the 4 multiplet of T.
We have

U >m.

2(M=
ieCU{w} 4

Just as ¢ € >, (T) is in a certain sense a solution to
the formal equation T¢ = Ad,s0 yeR,$ and
y € 8¢ are in the same sense solutions to the formal
equations (A — T)y = ¢ and (o0 — Ty = ¢, respec-
tively.

Let us return to the resolvent relations. By a resol-
vent of T we shall mean a family of g-operator versions
R,(T) of R,(T). For useful results we must impose on
this family enough additional restrictions to recover
as much as possible the properties of the usual re-
solvents of bona-fide operators. Here we consider
only two such: hermiticity and analyticity. If 7 has a
dual T'* as a generalized operator, then R,;(T) will be
said to be Hermitian if there is a resolvent R,(T*) of
T* such that R,;(T) = R/(T*)*. In addition, we may
want R,;(T) to be as analytic in 4 as possible; this is not
a well-defined notion here,but vaguely speaking what
we want is that all other versions with larger domains
of analyticity be in some sense less useful and also
that the severity of the singularities at points of non-
holomorphy be as small as possible. These questions
will be dealt with in greater detail in the next section,
but here let us see what these requirements suggest for
our example of the discrete Lee model.

Let us again assume for simplicity that 4,, 4;, and
p are real, that p, £ 0, that 1, < 4, <+ <4 <
Aes1 <+ v+ ,and that this sequence has no finite
accumulation point. By a straightforward calculation
we find that for 1 # 4,, k > 1,

Y + %ps
R, = cee. PR DR L
= (s T

and that for A = 4,, k > 1,

—¥
Ri.k#’:(( k;'”’ys"
Pr

oceC}

L'
wm——’cpm/(ak—zm),---)
P

where the y stands in the kth place and m # k.
Also

766}

Soo¢={(“;1/’1,1/)2,‘",wk,"')]ocEC}.
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The g-operator versions of these are

Ji + Ao
Rif = (a(hyf; - 2080
}.f (U()f’ ’ }.—};L ’ )
A, k2>1,
lef-:(;;ik;'."ykf;”',
k

fm_fipm/(;tk_lm),“')’ k21,
Pr

Sef= (’7f§f1,fz, S

where we have

() f = a(Aofy + ?a(z)kfk,
Yuf = Vkofo + ??’szz,

nf=nfo + ?nkfk

are all linear functionals on @_.
Imposing Hermiticity now imposes the following
restrictions which are easily calculated:

(A = (i m
a(4)e = 0((2_)0;
'}’ko="—_1a '}’kl=:‘1' & for I#k
Pr Pr X — 2y ’
Ve = Vrrs
=0 k21, Mo =To-

It is useful to exhibit explicitly the Hermitian
resolvents: for 1 £ 4, k > 1,

) T SuPr fe
RAT)Sf = (a2 S e .
AT = (oo + s 325 2
JoPr
+°‘(}~)ol_zk
S fe N e
+“(l)°(gz—z,)z—zk’ )
for A = 4,
R
P P
( & Snbm )
X \fo+$§::llclk_zm+'}’kkfk , ,

I = il PP )
lk _ lm ? »



GENERALIZED OPERATORS

where the term involving the infinite sum stands in the
kth place.

We are now left with the problem of determining
the function (1), subject to the reflection condition

a(A)y = (1), and also the real numbers y,,. The
analyticity properties of R,(T) are determined by
these choices. Now if a(4), is analytic in a domain D,
then so is R, except perhaps for the points 4, and the
point co. Let us determine under what conditions R;
is analytic at 2 = A,; certainly a(4), must have a zero
there,which we may want in any case in order to avoid
a second-order pole in R; there; furthermore,

—f‘k‘— + o(A)o

2
Pr
7 fr

(2 = &)

must be regular there,which implies that the zero must
be of the form —(1/p})(4 — A,). In addition we must
have lim Ry(T) = R, (T) as 2 — 2; which determines
Y- It 18 convenient to look at (1) = 1/a(4). Let us
for example decide we want R,(T) to be analytic at
each A,; then 7(2) must have a pole of the form
—pe/(A — A;). Assume in addition that (1) is analytic
at all other points. Thus, if 3 ° p?/(4 — 1;) converges,
then the most general form of r(2) is

o) = B — P

where E(1) is entire. Further detailed considerations
will show that E(1) =1+ o, where o is a real
constant is especially singled out,and thus (1) =
o+ A= 27° p2/( — 4. Likewise, if 3 p2/(Z — 4,)
diverges but the subtracted sum A 3" p2/(4 — A)4;
converges, the same considerations will single out the
7(2) of the form o + 2 — 4 3.7 p2/(A — A)Ay.

Analyticity arguments therefore provide us with
some of the external reasoning needed to interpret
infinite sums and to produce the correct subtractions
when necessary. The relevant eigenvalues are of course
now determined by the poles in R;,which in the two
cases above are located by the conditions

2

,1_00_"&_=0
Dy

or

© 2
P I
o+ A—-AS—LE 9
25(1 — A

whichever is appropriate. There are of course other
possible choices for «(4), and these may correspond
to different interpretations of the model.
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G. Elementary Orthogonal Methods

There is another approach to resolvents that
complements the multivalued methods of picking a
restriction of iR, and leads to more stringent results.
Its application,however,requires an insight into the
specific properties of a given generalized operator.

Let T be a generalized operator and suppose ® is a
direct sum ®; @ ®,. Then,as was pointed out before,
we can write T as a matrix

T]Z)
To/'

T = (Tll >
T21 H
We now formally compute (A — T)~! in terms of the
matrix elements. Let
Py= (A — Tu?,
T, =T+ TuwP;Ty,

Q=4 —-T)%
then one can easily show that
R;_ = (2. - T)_l = ( Q)" QATij )
P1T21Q}.’ PJI + P1T21Q1T12P).

The actual procedure to follow is to compute P,
and Q; by some method, such as the multivalued
approach, and to compute 7, and R; by analytic
subtractions whenever appropriate. The above pro-
cedure, of course, may have been in turn applied to
computing P; and Q; themselves so that we can get a
(possibly infinite) nesting of this method. One can
exhibit such nestings in terms of certain tree graphs.
Note that in the above decomposition @, is distin-
guished from @, and we express the above decom-
position by the graph

()

(le/,/ﬁ\\\\tb

If furthermore Q, were computed by orthogonal
methods by decomposing @, into ®,; ® ®,, with @,,
distinguished,we would express it by the graph

[}
K\ o,

D, D
On the other hand

2
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states that P, was computed by orthogonal decom-
position of @, into @,; @ ®,, with @,, distinguished.
It is clear now how to construct a graph for a general
nesting and it should be possible to find rules for
expressing R;, once the graph is given, in terms of the
matrix entries such as was done for the simple de-
composition above. The above procedure is one that
is most closely related to the subtraction methods of
conventional perturbation theory.

The use of orthogonal methods is of course pre-
dicated on the assumption that the direct sum de-
compositions of ¢ are somehow naturally adapted to
the generalized operator on hand.

As an example consider the discrete Lee model and
let ® be decomposed as C @ D, as in Sec. IIC. We
then have

Tll:c e }“Ocv
Tyo: i f} ~—> Z Prfis
Tyic ~— {cpi},
T {fk} > {}‘kfk}'
We have
P;: {fk} e {/.{ _]:kz

Let F be any finite-dimensional subspace of ®_, and
let it be generated by the orthonormal set [,
f@ v £V, Consider TygmzP;Ty; We have

N

() (?)
ToymgPTnic S zsz Pt _
Sk A — A

}, Aty

Assume oo is the only accumulation point of the 4.
If F belongs to a cofinal set, then eventually it contains
any set of the form e;, e, -+, ey, M < N and so
we have eventually

TympP;Tyic~—c

(B g 5 e
DA — A, i=Mukasdir A— 4, /'

and if this is to have a subtracted limit in A 3¢ 4,, it
can only be of the form

2
CWﬁc(zszl)’
(2

where

& Pi " py
——=E) + ( )

and E(A) is entire. If a finite number of subtractions

are sufficient, then the subtracted sum can be taken

to be

Px

P, () + l"Zm .
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where »n is taken to be the lowest possible integer and
P, is a polynomial of degree n — 1. If we set
() = (2 — A — 3 p2/(A — 4))7, then we find that
Q,:¢ ~—> a(4)c and that a computation of R, involves
no further ambiguities and is given by

R.f= (a(/l)(f0+ zzf’ile). )T%Ik

¥ “(l)(f” Ezpiflz)z szk)

We shall obtain the same result by other methods in
the next chapter.

H. Remarks

The discussion in this chapter has been very general
and it introduces just enough assumptions to be able
to define the important basic concepts. We are yet to
determine what additional assumptions are needed to
insure a successful program. We have made practically
no topological assumptions concerning ®_, @_, j,
and T this is a difficult problem but the following
remarks are appropriate.

We have already spoken in Sec. 1A of the possibility
that for specific applications certain choices of the
rigging may be more natural than others. Now for the
multivalued approach to the resolvent we feel it is in a
sense natural to pick the riggings that exhibit all the
possible generalized eigenvectors; we make this
notion understandable by the following examples:
Let T = (1/i)d/dx on $(R) = §(R); then the only
generalized eigenvectors are e'4®, 1 real; however, in
going to D(R) = D’(R) by the procedure of Sec. IIA
we acquire all the eigenvectors e*, 1 complex. As
another example let T be multiplication by the
function x on D(R) = D’(R). The only eigenvectors
are 8(x — ), 4 real, but by passing first to S(R) <
8’(R) and then to &(R) < &'(R), where &R) <
S8(R) is the Fourier transform of D(R) and &'(R) is
the Fourier transform of D’‘(R),we obtain all the
eigenvectors d(x — 1), A complex. Eventually, how-
ever, we expect in many cases to get no new further
eigenvectors. We are reminded here of the regularity
theorems for differential equations in which the
introduction of the possibility that the solutions may
lie in a larger space does not introduce new solutions.

The existence of an appropriately modified rigged
Hilbert space which in some sense exhibits all of the
possible eigenvectors of the original generalized
operator T in the original rigged Hilbert space ® must
of course depend on certain regularity properties of
the original matrix elements of T and when these
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properties hold, one should be able to construct these
natural rigged Hilbert spaces in which to exhibit 7.
We shall then say we have a complete rigging for T.
What the appropriate regularity conditions are we
have not determined but for generalized operators
that arise from physical considerations we can expect
no unusual pathologies and so these generalized
operators form a class of examples by which the
problem can be approached.

Now one may think originally that by choosing ®_
and @, sufficiently well only the physically relevant
eigenvectors will remain, as it happens for (1/i)d/dx
and more generally for the Gel’fand—Vilenkin riggings
for self-adjoint and unitary bona fide operators. We,
however, do not expect this to be a feasible program in
general. It is very hard to see how the subtracted sum
2% (pD)/(A — A)d, ,which we met in the previous
sections,can arise out of an appropriate choice of ®_
and ®, and appropriate topological restrictions.
Analyticity provides an insight into this problem. We
are again reminded of the theory of differential
operators. Thus even though a solution to a differ-
ential eigenvalue problem Lf = Af may correspond to
the Hilbert space spectrum of L only for certain values
of A, solutions exist for other values and have certain
analyticity properties in A. If L is sufficiently well
behaved, then these analytic properties contain all the
information needed to recover the Hilbert space
structure of L. In our case, analyticity has to be im-
posed from the outside rather than existing a priori
because we have allowed ourselves quite a lot of free-
dom in using weak topologies and multivalued maps;
this freedom, however, was necessary to develop an
elementary function theory that avoids ambiguous
divergent expressions. In the end, we try to recover
what we lost by imposing analyticity and other
assumptions.

Whenever orthogonal methods are used, then one
has to be able to choose riggings in such a way that ®
is appropriately a direct sum of other rigged Hilbert
spaces. In a way this requirement can run counter to
looking for complete riggings,as will become more
apparent later,but is nevertheless a natural procedure.

Underlying the above procedures is of course the
view that the analytic structure of the physically
relevant mathematical objects for the case of infinitely
many degrees of freedom is somehow similar to the
analytic structure of similar objects in the theory of
differential equations. Resolvent theory for generalized
operators is an attempt to express this view in precise
terms, and it is the task of the next chapter to develop
these ideas in greater detail for the case of symmetric
generalized operators.
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IIl. RESOLVENT THEORY FOR SYMMETRIC
GENERALIZED OPERATORS

Let T be a symmetric generalized operator on a
rigged Hilbert space ®. We shall here try to obtain
insight into the structure of T by two methods. The
first of these is to look for g-operator versions R, (T) <
R(T) and S_(T)< S,(T) which satisfy certain
conditions to be listed below. These conditions
should be considered as merely attempts and a given
resolvent may or may not satisfy them or else satisfy
them only partially. For reasons to become clear later
we shall not endeavor to prove under what hypotheses
these conditions can be met; furthermore, certain
parts of this chapter will invoke extramathematical
reasoning based on notions current in existing physical
theories. What this method provides us with is a
sieve by which we try to isolate the intrinsic structural
properties of T from the ambiguities inherent in the
multivalued approach of the previous section.
Unfortunately, the sieve is too coarse to deal effectively
with many problems but we have good reasons to
believe that a refinement of these methods together
with other approaches will soon provide tools for
dealing with such problems.

The second approach is to use orthogonal methods
as outlined in Sec. IIG. Of course this approach must
use a decomposition of the rigged Hilbert space and
directed sets of finite-dimensional subspaces of ®_
that are somehow specifically adapted to 7. We have
not developed a theory of such relationships but will
use what seems appropriate in a given situation.

A. Mathematical Renormalization

Let K be a positive generalized operator; then one
can introduce a Hilbert space H which consists of the
equivalence classes of K-Cauchy sequences of elements
of ®_. Namely, a sequence {f,} < ®_ is called
K-Cauchy if for any e > O there is an N such that
n, m > N implies (f, — f,., K(f, —fa)) < e Two
such sequences { f,,} and {g,} are K-equivalent { f,}5{g.}
iflim (f, — g., K(f., — g,)) = Oasn — co. The linear
operations }'{fn} = {Afn} and{fn} + {gn} = {fn + gn}
do not conflict with the introduction of K equivalence
and so the set of equivalence classes forms a well-
defined linear space. The introduction of the inner
product ({f.}, {g.})x = lim (f,,, Kg,) as n — o0 is
also well-defined and makes the set of equivalence
classes of K-Cauchy sequences into a Hilbert space.

There is a canonical linear map Ax:®_— Hy
which assigns to f e ®_ the constant sequence A f =
{f.f. [, -} The map Ay is not necessarily an inclu-
sion,for we may have Ag f = 0, that is,(f, Kf) = 0.
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The subspace Ap®_< Hy is clearly dense for
{fu} = 1lim Ag f, as n — co.

Let now J > K > 0 be two positive generalized
operators. We see that every J-Cauchy sequence is
also K-Cauchy and if {f,}7{g,}, then also {f,}z{g.}.
Thus, there is a map py;:H; — Hyx which takes

{fu) eHy; to pr{fa} = {fo} € Hx: px; thus does
nothing to the elements of the sequence but it re-
interprets it in a different Hilbert space. We obviously
have pg;A; = Ag and if J > K > L > 0, then we
have pyxprs = pry. Furthermore,we have
loxsAsf s = 1Ak Sl
= (LKN <L Iy = 18117

from which we can conclude that | px | < 1.
Introduce now the sesquilinear form A, k ~—>
(pxsh, prsk)x on H;; we have

[(pxsh PKJk)KI L lpxihle lexikle < A4l 1k,

and by a standard theorem we conclude that there is a
bounded operator K in H; such that

(pxsh, Pk = (4, Kik)y .
From this we deduce that

0 < (h, K;h)y = lpxshl < k1%
so that 0 < K < 1. We likewise have

(h, KsK)g = (prahs presk)x = (h, prespicak)s
so that
K, = P:{JPKJ-
Define now the map r;x:Ax®_ — H; by
rigBgf= (KJ)%AJf'
We have
3 2 _ % 3
IKGA SN = (K5Asf, K5Asf)s
= (Asf, KA )
= (prsBDsf, prsBiNx
= (Axf, Axf) = Ak Sfl%.

so that r;x is well defined and is in fact an isometry.
By continuity we can extend r;x to an isometry,
again called r, . , between H - and the closure of the
range of K3:
TJK:HK y range(Ki) < HJ.
Now
Irssprsbaf Vs = Wrobef Vs = IKSALF1G
and we have

3
roxPrs = K;.
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Of particular interest is the case when K; is an
orthogonal projection, which we shall denote by Q. ;.
If this be the case, we say that J > K is a projective
pair. We then have K} = Q%;_, = Qs = K, and so
rrxPrxy = PksPxy; but this implies that

E 3
rigPrIDIf = praprsBif of ryglgf= P;(JAKf
and we have that for a projective pair

*k
Fyg = PKJ-
Furthermore,

i PKJPI*{JAKf ”3{ = |lprsrorBxf ”3{
= ”PKJQ%{JAJf I
= 1QxsAsf 1% = 18x S 1%
and we have for a projective pair

PKJP;{J =1g.
Suppose now J>K2>L >0 and the pairs
J 2 Kand K > L are projective. We first show that
J > L is also projective. Indeed we have pyxpr; =
prs and so

Ly = pLsPLs = PRIPLKPLEPES = PXsLKPKTS

consequently,
2
Ly = pksLrpriprsLlePrs
= pxsLlrlkLrprs = prslrprs = Ly,

proving that L is a projection. By taking adjoints in
the equality prxpx; = prs We now find the impor-
tant transitivity relation

ryrfgrL =tyrL-

We now prove a few simple results which we dignify
to the status of lemmas for convenient future referral.

Lemma 1:Let L, > 0,i= 1,2, - be a countable
family of positive generalized operators such that the
weak sum L = Y L, exists;then 3 (L;); = 1, where
the sum is strong.

Proof: For f, g € ®_ we have

(Bzg, ALf)r = (g Lf) = 2 (g, L.f)
= Z (AL,»g > ALif )L,.
=D (Arg, (L)AL

and so on A;®_ we have the weak sum Y (L), = 1.
Since 0 < (L;), < 1,we have that any partial sum
SN (L) ispositiveandso,on A, ®_, 0 < 3V (L), <
1 and so by continuity 0 < 3V (L)), < 1 on H; the
partial sums are therefore uniformly bounded in norm
and we conclude that > (L), = 1 weaklyonall of H,.
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To show that the sum is strong,we invoke the result of
Hilbert space theory that a bounded converging weak
sum of positive operators in fact converges strongly
to the same limitm

Lemma 2: If on a Hilbert space H,we have 1 = 3 P;,
where P,,i = 1,2, -, are orthogonal projections;
then P,P; = 0 for i # j, that is,we have an orthog-
onal decomposition of 1.

Proof: Forhe P.H wehave h =Ph + 3 ., Phor
Y% P;h = O;but each P; is positive,so we have

0 < (h, P;h) = —(h, S th) <0;

k#4,3

so P;i = 0,showing that P,P; = O for j 5 im

Combining the above two lemmas,we have imme-
diately:

Lemma 3: Let L, >i=1,2,-+- be a countable
family of positive generalized operators such that the
weak sum L = 3 L, exists and such that each pair
L > L, is projective; then the sum 1 = (L,), is an
orthogonal decomposition of 1m

Lemma 4: Let L, > 0i=1,2,-- be a countable
family of generalized operators such that the weak
sum L = > L, exists. Introduce the sesquilinear forms
Si(h,k) on Hp by S.h, k)= (prrh, pr,iK)r, =
(h, (L) k)z, and let S;(h) = S;(h, h) be the corre-
sponding quadratic forms. Let N, = {h € H | Si(h) =
0}; we call N, the subspace of H; degenerate with
respect to L;. We now claim that (L,), are all orthog-
onal projections if and only if the subspaces N;- form
an orthogonal decomposition of H,.

Proof: The necessity was already established in
Lemma 3 since if (L;); are all projections, then
1 =73 (L), is an orthogonal decomposition and
Nf = (L) H.

To prove sufficiency,let H; = @ N} be on orthog-
onal decomposition and let 7; be the projection onto
N}. Then

Si(h, k) = S, 7k + (1 — m)k)
= S;(h, mk) + Sh, (1 — m)k)
but by the Schwartz inequality
ISiCh, (1 — w2 < S:(WS((1 — 7)k) =0
since (1 — m)k € N;. Therefore Sy(h, k) = S;(h, mk).
Now by Lemma 1, (h, k), = Y S;(h, k) so we have

(h, 7k)p = 2 ; Si(h, mk) but,for j # i, S;(h, mk) =
Sy(h, mymk) = O since mm; = 0 by assumption. Thus
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(h, mk) = Sy(h, mk) = S(h, k) = (h, (L)k) and
we have (L,);, = m; an orthogonal projectionm

A corollary to Lemma 4 is the following lemma:

Lemma 5: Let J 2 K > 0 be positive generalized
operators; let Sx(h) = (h, K;h); and let N =
{h € H; | Sx(h) = 0}. We claim that K is a projection
if and only if for f€ N we have Sx(f) = | fI%.

Proof: We have J = (J — K)+ KandJ — K > 0,
K > 0, so by Lemma 1 K is a projection if and only
if (J—K); is. Thus, by Lemma 4 H; = Nj;: ®
Nj_x and so if feNi, then S; x(f) =0 and
/1% = Sx(f) + Ss—x(f) = Sx(f)m

Now let 4 be a directed set and {/,},., a family of
positive generalized operators such that for § > «,
Jy > J,, and the pair is projective. Such a family we
shall call a projective net. For the sake of notational
ease we shall use just the symbol « as a subscript where
otherwise we would have used the symbol J,.

Introduce now the family of rigged Hilbert spaces
o, = (H,, H,,id,); then it is readily apparent that
by defining k_g, = ry, = k.45, we have an inductive
family of rigged Hilbert spaces. Let V" = _lim @, be
the inductive limit of the family {®,} and likewise let
A = _lim A, be the inductive limit of the family of
maps A,:®_— @, = H,. The maps A, and A will be
called dressing transformations.

Define the canonical conclusion k,: H, — ¥, by the
composition of canonical inclusions j k_,:®_, =
H,—»Y_—Y¥,. We have kgry, = k,. The inclusion
k, is an isometry for

kel = (k_ghy, jk_gha) = Il
by inductive limit theory. Thus, each H, can be identi-
fied as a closed subspace of ''y; let E, be the orthog-
onal projection in ¥’y onto this subspace.

The rigged Hilbert space¥ is called the renormalized
rigged Hilbert space; the elements of W are called the
renormalized vectors, and the elements of ¥, are called
the dressed vectors.

The family {E,} is called the renormalized projective
net.

Now let 4 be a ¢ ring of subsets of some set X and
suppose 4 is generated by a subring A°. We do not
assume A" is necessarily a ¢ ring. By a complex
measure p on A, finite on A%, we mean a complex
combination u =m, —m_+ i(n, —n_) of finite
positive measures m,, m_, n,, and n_ on A° By
standard measure theory we can extend the four finite
positive measures to 4 but on # they need not be
finite. We set |ul =m, + m_+ n_ + n_.
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If J is a map assigning to each 4 € A a generalized
operator J(A), then we say that J is a generalized
operator-valued measure on A finite on A° if every
matrix element is a complex measure on # finite on A°.
Namely we require that for all £, g € ®_ the corre-
spondence A ~— (f, J(A)g), A € A% define a complex
combination of finite positive measures.

If J is as above, then we say that J is a generalized
spectral measure on A if in addition J is first positive
on A°, J(4) > 0 for A € A°, and if, secondly, when-
ever A, Be A%, and A © B the pair J(4) > J(B) is
projective.

We note that A% is a directed set so that a generalized
spectral measure on # is in fact a projective net. We
therefore have the renormalized rigged Hilbert space'V’
and the renormalized projective net {E,},.40. The
main result of this section is the following:

Theorem 1: There exists a unique spectral measure
A ~—> E(A) on # which extends the renormalized
projective net A ~— E, on A° That is, E(4) = E
for 4 € A° and furthermore:

(SM1) Eis ¢ additive on #;

(SM2) if 4, B € #, then E(A)E(B) = E (A N B);

(SM3) sup 4 E(A) = L.

Proof: Since A° is a generating subring for #,then by
standard extension theorems'?> we need only prove
(SM1)-(SM3) on A° To do so,we need to transfer
results from some Hg to Wy; we make use of the fact
that for S and T e A® the maps kg and rg, are
isometries and that kgrgy = kp.

Thus, let 4, € A° be a disjoint sequence of sets and
assume A4 = |J A, €A’ Then we have J(A4) =
> J(A4,) by hypothesis and by Lemma 1 we have,
therefore, that in H,, 1 = X Q4 4;but by the above
remarks this implies that E, = 3 E, and since 4,
A, € A" we have E(A) = E(4,) and so E is ¢
additive on A°.

Suppose now that A, B € A%then since 4 U B =
(4\B) U (4 N B) U (B\4) is a disjoint union,we have
by hypothesis and by Lemma 1 that in H 5,

QA\B,AUB + QAﬁB,AUB + QB\A,AUB =1

and similarly
QA\B,AUB + QB,AUB =1,
Opaauvpt+ Qqavp=1

SO

QB,AUBQA,AUB =(1 - QA\E.AUB)(I - QB\A.AUB)

1= QA\B,AUB - QB\A.AUB

since Q45 4up@pu4,4up = 0 by Lemma 3 and the

GEORGE SVETLICHNY

first equation. By the first equation again we have

QA,AUBQB,AUB = QAHB,AUB’
which implies that
E Ep = EAF\B

£

and since all three sets 4, B, and 4 N B are in A%,we
have E(A)E(B) = E (A N B) on A°.

Finally suppose 4 | sup,.4 E(4)¥, and & # 0;
then there is an feW'_ such that | f — &|| < | f]; but
fek,H, for some A €A and so ||f|| = [EA)S]| =
|ECA)(f — I < If — kIl < I/l which is a contra-
diction; thus & = 0 and (SM3) is truem

The spectral measure E we shall call the renormalized
spectral measure.

Finally a last mathematical notion: By a Hilbert
space with indefinite metric we shall mean a Hilbert
space together with a symmetric bounded operator 7
whose spectrum is contained in the points +1. We
define (f,g), = (f, ng). By a rigged Hilbert space
with indefinite metric we shall mean a rigged Hilbert
space @ in which @, is a Hilbert space with indefinite
metric.

B. The Resolvent Conditions

We now list the conditions on R; and S, by which
we hope to gain insight into the properties of T.

Condition 1 (Hermiticity): This condition was
introduced in the last section and for symmetric
generalized operators this now reads

Ry(T)* = Ry(T).

This equation really makes sense only if the domain
of R,(T)is ®_;however,the domain can be forced to
be smaller. Let @, < ®_ be the domain of R;; then
our condition is

(& RUD)f) = (fs Ry(T)g)

for all fe®;, g€ ®;. This condition reduces to the
above one in case ®;, = ¢_ = @,

Condition 2 (Analyticity): This is a heuristic require-
ment. We should pick the domain of analyticity so
that any version with a larger domain is somehow
not as interesting and furthermore we should endeavor
to have the severity of the singularities in R, be as
mild as possible. For example, we could endeavor to
have analyticity everywhere off the real axis or off the
real axis in a neighborhood thereof.

Condition 3 (Positivity): We assume we have
analyticity off the real axis in a neighborhood thereof.
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Let the imaginary part Im R, of R; be defined as
(12D)[R,(T) — R,(T)*]. We now require that there
be a neighborhood of the real singular points of R,
such that for 4 in the open upper half-plane and within
this neighborhood Im R; be a negative generalized
operator.

For bona fide operators Im R; is negative in the
entire open upper half-plane but we cannot expect this
for generalized operators. The truth of positivity for
bona fide operators follows from the equation

ImR;, =Im f(dx)
—Xx
=J‘ (=Im H)E(dx) _ —Im A E(dx) ’
A — x|* |2 — x|*

which is negative for Im 4 > 0.

Condition 4 (The measure condition): The intuitive
statement of this condition is that the imaginary part
of R,(T) along the real axis should be a generalized
operator-valued measure.

We assume we have analyticity off the real axis in a
neighborhood thereof. If / is a continuous positive
real-valued function of compact support on R,
then there is a real number € # 0 such that the set
supp (/) + ie lies within the holomorphy domain of
R;(T). In this case we can construct the integral

un=—iﬁm&mamww

and, again by analyticity, the matrix elements of
J.(!) define complex-valued measures u, , (dx) such
that

ﬁmwwm=muw

=—lPLMRW@WML
w

f,ged_.

This measure of course has to be thought of as being
concentrated within the set of points x such that x +
ie is within the holomorphy domain of R, and by
assumption,if ¢ is small enough,this set contains an
arbitrary finite interval. The function / must of course
have its support within this interval.

Consider now the measures [u, , | (dx);then if

lgﬁmawwm

exists for all f, g € ®_,we have that limJ.(/) as e | 0
exists and we call this limit J(/).
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The measure condition is now the following: We
assume there is a o ring A4 of subsets of R with a gener-
ating subring A® of open sets and a generalized
operator-valued measure J(dx) on - finite on #A° such
that whenever J(/)exists/is measurable with respect to
# and

f J(dx)l(x) = J(I).

Instead of the resolvent R, we could have applied
the same reasoning to a function «(4) analytic off the
real axis in a neighborhood thereof to arrive at the
notion of a(A) satisfying the measure condition. In
this case there is no need to take matrix elements and
we would have therefore introduced the complex
measure 4. by p(dx) = —(1/m) Im a(x + ie) dx.
The measure whose existence is asserted by the meas-
ure condition we shall call p(a, dx).

Anexample of a function satisfying neither positivity
nor the measure condition is 1/42.

Condition 5 (Projectivity): Assume the measure
condition is satisfied and assume further that there is a
C € # such that if we define £, = {4 e A |4 < C} =
ANC and AL ={A€A°| 4 < C},then A% is a
generating subring of A and the measure J is positive
on s . Projectivity now requires that J be a general-
ized spectral measure on A; that is,if 4, B € A%, and
A > B, then J(A4) > J(B) must be a projective pair.
If this is satisfied, then we say we have projectivity
on C.

If C is as above except that J is negative on A,
then by working with —J we could again impose
projectivity and we shall still say that J is projective
on C.

Projectivity is a generalization of the notion of
orthonormal decomposition. We now introduce
another generalization which should be closely related
to projectivity through the exact relationship we do
not know at present.

Condition 6 (Decomposability): Assume we have a
measurable space (Z, 3), where 3 is a o ring of subsets
of Z, which in addition carries two further structures:
a real measurable function z ~— A(z) and a weakly
measurable function z ~—> y, € ¥ (T) such that y, €
> iz (7). What we mean for p, to be weakly measur-
able is that all the functions of the form z ~— (f, v,)
for f € ®_ are measurable. This situation corresponds
to the familiar practice in elementary quantum
mechanics of introducing ‘“‘auxiliary variables” into
eigenvectors for the space {z | A(z) = A}, where 2 is
real is the space of auxiliary variables for eigenvalue 4.



3456

Now let u be a real measure on Z and consider the
generalized operator-valued measure K(dz) given by

K(dz) = |y,) .| u(dz)-

We assume now that R;
condition.

The condition of decomposability is now the follow-
ing: there exist appropriate (Z,3), A(z), y,, and
#(dz) such that for 4 € A

satisfies the measure

JA4) = f K(dz) = f 1. () w(d2).
{Alz)ed)} {Alz)ed)}

If the above is true as for projectivity only for
AeAYy = {A€A| A < Ce A}, then we say we have
decomposability on C.

Let us discuss the two conditions of projectivity
and decomposability. Both of these conditions allow
us to reinterpret T as a bona fide operator in a new
Hilbert space.

In the first place, assume we have projectivity on
C € £ with J a positive measure on #. . Then we can
construct the renormalized rigged Hilbert space
Y, = ,lim ®,, where 4 € A% . The measure J then
becomes renormalized to a bona fide spectral measure
E on C and we define 75| C to be the operator
Jo AE(dA) and call it the renormalized T in C.

If J were negative on C,then using —J we again
repeat the above construction and keep the same
designations.

Now let C = C, U C, be a disjoint union of C; € A
such that J is projective on each one and is positive on
the first and negative on the second. We can now
introduce Vo =¥, ® ¥¢,, which again obviously
carries a spectral measure £ on C and defines a
bona fide operator Ty | C. In this case, however, we
make V', into a rigged Hilbert space with indefinite
metric 7 by defining n(h; @ hy) = by @ (—hy). The
spectral measure E is a spectral measure in the sense of
spectral measures with indefinite metric; that is,we
have (f, E(A)g), = (E(A), g), »which follows from
the fact that % commutes with E.

If we have projectivity on all of R with J positive,
we say that T is renormalizable and we define the
renormalized T, Ty, to be Tr, | R as defined above.

Suppose now that R, is decomposable on C € #,
and let (Z., 3) be the appropriate measure space. We
can now introduce the Hilbert space LAZ,, |u| (dz))
which will be called the space of renormalized vectors.
The dressing transformation Ao will be defined as the
map which to every f € ®_ assigns the complex valued
function z~— (f,y,) on Z,. This function is of
course not necessarily square integrable. One may
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like to construct a rigging¥V'_ < L¥Z., |u] (d2)) =
¥, ¢ such that Ao®_ <= ¥, but there is no canonical
way to do this.

We can now introduce the spectral measure F on
Zg in L3(Z) by setting (F(W)h)(2) = yp-(2)h(z) for
hel? and We3. We can likewise introduce the
spectral measure E on C in L¥Z;) by E(A) =
F({z ] A(z) € A}). This will be called the renormalized
spectral measure of 7 on C and we define 7, | C =
¢ AE(dA),which we call the renormalized T in C.

One finally makes the Hilbert space L*(Z.) into a
Hilbert space with indefinite metric by defining 7 to be
multiplication by the Radon-Nikodym derivative
dufd |u] ,which as is clear takes on the values +1
almost everywhere. Since F commutes with 1, we see
that F, and subsequently E, are in fact spectral
measures in the sense of Hilbert spaces with indefinite
metric.13

Condition 7 (Well dressing): This condition concerns
the dressing transformation A. As we shall see from
the heuristic discussion below, A can be thought of
as a solution to the formal problem of finding a
transformation that intertwines T and T, that is,
TrA = AT. This equation is purely formal since AT
is not defined,for if f e ®_,then Tf is not necessarily
in ®_, the domain of A. We want to make this
formal consideration closer to the truth. More
generally,if A formally intertwines T and T, then one
could also consider it to formally intertwine E and J,
or 1/(A — Tg) and R,(T) or any other such pair.
Let us work with E and J to state the condition and
then for any other pair the situation is entirely
similar. Formally, we have E(A4)A = AJ(4) or
E(A4) = AJ(4)A'; we now want to use elementary
function theory to interpret this equation. To do so,
we consider each of E(A4), J(4), and A as a linear
relation between some appropriate spaces and then
take an interpretation of the formal equation. The
loosest sense of the formal equation is to consider
E(A) e M(Y,), J(A) e M(D,), and Ae M(D,,¥))
and require

E(A) = RJ(A)A-AT(A)A.

However, one can take less loose interpretation such
as not taking the closure of J(4) in the above expres-
sion or even simply looking at AJ(4)A~1,which may
make sense. Alternatively, one could consider A to be
an element of M(®_,¥,) rather than M(®_,V,).

In any case, if in some of the above senses the
formal equation holds,then we say that J is well
dressed. In practice one can start with the loosest
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interpretation and then try to make it more stringent
to see whether the choice of R, is in this way narrowed
down but still interesting. Had we instead used the
pair 1/(A — Ty) and R,,then similar conditions would
have defined the notion of R; being well dressed, and
so forth.

The use of the pair 1/(A — Tj) and R, can be more
advantageous since one can use analytic subtraction
methods on it, in which case it is better to use the
formal equation in the form [1/(A — Tp)]A = AR;.
Now the left-hand side is often well defined already,
for Ty, is often concretely a multiplication operator
and thus can be extended to W', without much ambi-
guity. On the other hand AR,;, in general, needs a
subtracted interpretation which most often can be
taken in the form limy & AmgR; + Pg(4).

To clarify the terms dressed vector and renormalized
vector,we consider a decomposable resolvent and the
corresponding function z ~— ,. The function z ~—

(f, ) is heuristically the decomposition of f with
respect to a ‘“‘complete orthonormal set ’; however,
the set of generalized vectors {y,} is orthonormal only
by fiat since, in general, the y, will not lie in @, the
“bare’” Hilbert space nor is the inner product in @,
the appropriate one to exhibit the structure of 7. The
resolvent is used here to determine which particular
set of generalized vectors it is appropriate to make
orthonormal by fiat and this is done by requiring
K({A(z) € A}) = J(4). Now since y, € >, (T), we
have the formal equation Ty, = A(z)y, and so ATf
is formally the function

Z > <T_fa y)z> = <_fa Twz> = l(Z)(f, 1/}z> = (TRAf)(Z)

since Ty is the operator of multiplication by the
function z~~— A(z). Thus A is indeed formally a
dressing transformation.

Consider now a function & € L*Z, |u});then it need
not be of the form Affor f € ®_;however,formally it is
of the form A¢ for ¢ e @, . Let

6= f w.h(z) ] (d2);
then formally

(Ad)(2) =f (Yo h(w) [l (dw) = h(2)

since by the by fiat orthonormalization procedure
(., ¥,y should be a reproducing kernel with respect
to |u| (dw). The inner product (yp,,, p,) is not defined
and when expressed concretely in any given concrete
rigged Hilbert space will involve meaningless divergent
expressions. By a formal “renormalization” of these
divergent expressions one can then consider / as a
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“renormalized’” version of ¢-hence the name re-
normalized vector. The name is appropriate from
another point of view,for in the projective case the
states in W, arise via the process of introducing new
pseudonorms on ®_, namely f~— [|A,f .

What the above processes of renormalization have
to do with the physical renormalization program is
not here clear since the former are mathematical
notions whereas the latter embodies many physical
ideas; however,we feel that part of the physical
renormalization program is embodied in the mathe-
matical methods exhibited above.

Condition 8 (Nondegeneracy): This is a somewhat
ad hoc condition and it requires that R, f = 0 imply
S =20 for all points of holomorphy of R,. For
bona fide operators this is true since R, is the bounded
inverse of an operator at all regular points.

Condition 9 (Ray limit): This condition is also
somewhat ad hoc and it is based on the following
observation concerning a self-adjoint bona fide opera-
tor 4. The resolvent of A4 is given in terms of the
spectral measure E by the integral

R, =J‘ E(dx)

A—x

We note that

[1 — (xe”/IAD]E(dx)
[cos 8 — (x/|AD] + sin® 6
has, when 0 % 0, = and |A| — oo, the weak limit
J E(dx) = 1.

Our condition now is that along the rays |1|e??0 0,
m,which eventually,as |A| — co,enter the holomorphy
domain of R;,we have

I}Ll eigRMIcio =

lim AR(T) = S (T),

|A] =
where S, is a symmetric g-operator version of 8,
picked independently of the rays used in the limit
above. Certain of these versions may be more natural
than others, but as will be seen from the examples,even
if j © 8,,it is not always useful to pick this version;
however,we could require that j be a version of S,
in which case if the ray limit holds for such an S, we
say we have a normal ray limit.

Having constructed the renormalized rigged Hilbert
space ¥, there arises the question of how one is to
interpret physical processes within it. This question is
complicated by the fact that the by-fiat procedure of
orthonormalization destroys the detailed concrete
structure of the generalized vectors v, and it is this
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structure that carries any additional physical informa-
tion. This question will be looked into in the next
section on several operators since often physical
information is carried by a set of generalized operators
rather than by a single one. For now we examine only
single operators.

In the examples that follow we shall in the multi-
valued approach endeavor to pick resolvents satisfying
all of the following conditions:

(1) hermiticity;

(2) analyticity;

(3) positivity with measure condition on R with 4
being the ¢ algebra $ of Borel subsets of R ;

(4) projectivity on R or decomposability in some
sense;

(5) well dressing of R; in some sense;

(6) nondegeneracy;

(7) normal ray limit.

We cannot hope to satisfy all of the above conditions
in all cases but the obstruction to satisfying them
should lead to important insights into the differences
between bona fide and generalized operators.

We shall also apply orthogonal methods to supple-
ment the multivalued approach. To be effective,we
must at times nest the approach, that is,apply orthog-
onal methods to the calculation of Q, and P,. This
nesting can continue indefinitely, thus arriving at
something resembling an infinite continued fraction
expansion of the resolvent. The combinatorial
problems involved in such expansions are formidable
and so we shall pursue only simple situations.

At various points in the following we shall refer to
the intrinsic structural properties of T. This is not a
well-defined notion but we mean by it the following:
Since our approach is inductive and combines both
mathematical and physical reasoning, any result we
obtain is influenced by both a yet to be discovered
mathematical theory and by a physical interpretation.
Some of the results should,however,be less contami-
nated by extramathematical ideas than others and thus
should appear in a cogent form in a proper deductive
theory. At the moment,however,we can recognize such
results only by an insight and when we feel we have
such a result,we shall refer to it as an intrinsic Struc-
tural property.

C. Examples

Example 15: -Consider first the simple case of
multiplication by the & distribution on D(R) <
D(R),

(If)(x) = f(x)8(x) = f(0)d(x).

If € D’(R), we can have f— 7 in the sense of
distributions in such a way that f(0) approaches any
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complex number; thus we have
Tr = {«d(x) |« € C} for reD,
and we find

A#0:R;T = {i‘r-}-aé(x)[ OCEC},

A=0:Rer =D if r=0adx), aeC,
= ¢ otherwise,
8,7 = {r + ad(x) | ae C}.
The Hermitian g-operator versions are easily
computed to be

A#0:R,f= i f+ a(A)f(0)6(x) where «(d) = a(Z),

A=0:Rf=¢ if f#0,
=0 if f=0,
Sof =1+ Bf(0)0(x), P real.

Imposing analyticity, we require «(1) to be real
analytic with singularities on the real axis. We have
Im A

|4*

and for Im R; to be negative for In4A> 0 in a
neighborhood of the singularities we must have
Im «(2) < 0 for Im A > 0 and in a neighborhood of
the singularities.

By the measure condition with £ = 3 and posi-
tivity we have

J(AYf = 240)f + p(a, A)f(0)3(x),

where u(a, 4) > 0. ,
There are thus four possibilities for H:
(1) 240) = 0, u(ax, 4) =0;hence H, = {0},A,f =

ImR;f=— £+ Ima(2)f(0)d(x)

0;

(2) 240) =0, u(a, 4) >0;hence H, = C, ||c|2, =
u(x, A)lcl?, and A4 f = f(0);

(3) %4(0) = 1, u(x, A) =0ihence H, = LA(R, dx),
IAlE = Al2s, and A f = f;

4) 240 =1, p(a, A) > O;hence

H,=I1¥R,dx)o® C,
Ilh® el = IAlzs + plo, A)lel?,
and Ay f = f® f(0).

We see that by projectivity it is impossible for there
to be two disjoint sets 4, and A4, such that u(a, 4,) >
0 and p(x, 4,) > 0. In that case, H, will have a
direct summand of the form C with the norm squared

w(o, 4y) [*|?,and H, 4, will also have a direct
summand of the form C with norm squared

(e, A1) + plx, Ao)] [+
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Regardless of whether we have a direct summand of
the form LR, dx),the space H ,, , 4, has no degenerate
subspace with respect to J(4,) and so by.Lemma 5 we
must have [|A, 1%, = 1A, o/ 1%, 04, Which con-
tradicts the hypothesis.

Thus, «(4) must have only a single simple pole on
the real axis:

Bo
AN=ERN)+——,
o) = ED + 727
where E(1) is entire and fy > 0 by positivity. The
normal ray limit implies E(A) = 0 and §, = §.
For 8 = 0 we find that

VY _=¥,=V,=1%R,dx), Af=/,
and E(A) = x,(0). For 8 > 0, we find that
VY _=Y,=Y¥, = L)(R,dx)® C

with |||z = ||-|%. + B|-[* and Af=f® f(0). The
renormalized spectral measure is

E(4) = XA(O)PLZ + %4(A)Pc

where P, and P are the canonical projections onto
the respective direct summands.

The case f = 0 is not interesting since E is the
spectral measure of the zero operator in L% We do
not consider this case further.

For 8 > 0, E is the spectral measure of 1,P and
thus 7 is reinterpreted as A, times the projection onto
the subspace generated by 0® 1/,/B. This is con-
sistent with the formal picture of T,for formally
(T%)(x) = 5(0)f(0)3(x) = S(O)(T/)(x) and so T* =
0(0)T and T is 6(0) times the projection onto the
subspace generated by the & function. We have
“renormalized’’ 6(0) to A, and made the 6 function a
new discrete state of norm 1/,/8.

The above resolvent is decomposable, for let
Z =NV R be the disjoint union of the set of
integers N = {1,2,3,---} and the real line R; let
3 = the ¢ algebra of all subsets of Z. Let

Mz)=0 for z=nelN,
=) for z=1elR;

let
v, =1, for z=neMN, wherey, is some
orthonormal set in L3(IR, dx),
=d(x) for z=1eR;
and finally let

#(L) = the number of points in L for L = N
= Byr(A) for L < R,
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Then this is easily seen to afford a decomposition
of J,

J(A) =f 9. (0] u(d2).
{ilz)ed}

The resolvent R, is well dressed for a computation
of

P, = ARA'v

|

1
[l

R,A
shows that

P1h®c={ih®a|ae<€}

and so 1/(A — Tg) < P, and R, is well dressed.
In connection with well dressing we further note
that Q; = AR,A1is given by

Qﬂl@C:{-ﬁh@alaeC} if h e D and h(0) = 0,

= ¢ otherwise

and so @, has a restriction which coincides with
1/(A — Ty) on a dense subspace of ¥, and thus R,
is well dressed in even a more stringent sense.

In this example we, of course, could have violated
some of the conditions; thus taking § < 0 we still
would have had V_ =¥, =%, + LA(R,dx)® C
with 12 = |2, + |81 |2 and Af = f & £(0) but we
would now have had a rigged Hilbert space with
indefinite metric with n(h® ¢) = h ® —c. We shall
not pursue the discussion of any other violations.

We note that the pole in R; at 4 = 0 with residue j
is present in all cases and that J(4) is always a linear
combination of j and the multiplication by d. These
are the intrinsic structural properties of T; the rest
reflect certain arbitrary choices that can be made.

We shall not work out subsequent examples with
as much explicit detail since much of the detail is
entirely straightforward but often cumbersome to
write out.

Example 16: As a slightly more complicated example
consider C @ D(R) = C ®» D'(R) and

T(fo, /1) = (—gf1(0), —gfod(x)).
We have

T(Tm ™) = {(«, —g‘roé(x))l ae C},
where (74, 1) € C ® D'(R).
One easily finds
A % 0:Ry(rq, 7p) = {(oc i (ry — gaé))

A= 0:Ry(7g, T) = {(79, ¥) I peD}ifr, = g70,
= @ otherwise,
Soo(TO’ Tl) = {(aa Tl) | o€ C}

ocEC},
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and the g-operator versions of these are

2% 0:R(fo, ) = (ou(fo,fl), Ui - ga.l(fo,fl)a]),

A=0:Ry(fo,f)=¢ if (fo, f) #(0,0),
= (0’ 0) if (fosfl) = (0’ 0),
Soo(fosfl) = (ﬂ(fO’fl),fl);

where a; and g are linear functionals ®_ — C.
The imposition of hermiticity requires that

(o fo) = a(h) [fo —g ifl(O)} «(1) = (),

ﬁ(fo ) = ﬂofo’

By analyticity we require «(4) to be analytic off the
real axis,

The ray limit implies that Aa(1) — f, along rays
|A|e*6 £ 0, 7 as |A] — co. To have j < S ,we must
take f, = 1 and we do so.

Assume the measure condition; then we see that
a(A), A-ta(4), and A~2a(4) must all satisfy the measure
condition and we set p,(A4) = u(A*a(R), 4) for
k=0, —1, —2. We have

J(A) o, f1) = (A fo — g1 (A)£(0),
240 fi — gu_1(A)fed + g°n_o(A)f(0)d).
Let M(A) be the matrix

( Ho(4), —g,u_l(A)) )
—gpa(4), glu_o(4)

For J(A) to be positive M(A) must be a positive ma-
trix on C2 There are three possibilities for p, =
rank M(A4), namely p, = 0,1, 2. Furthermore de-
pending on whether 0 € 4 or not,we do or do not
have a direct summand of the form L*(R, dx)in H,,.
The presence or absence of this summand does not
affect our discussion and so we proceed with the
analysis of M(A4) assuming projectivity.

Suppose p, = 2;then if 4’ is disjoint from 4,we
must have by positivity p, = 2for M (4 U 4') =
M(4) + M(4'). By Lemma 5, we must have
uwtM(Au = utM (4 U 4") u for every 2-component
vector u = (1), where u* = (uy, u3); but this implies
wtM(AYu =0 and since M(A') is a symmetric
matrix on C2,we have M(A4") = 0.

A similar discussion also shows that if p, = 1 and
A’ is disjoint from A’ such that p,,, =1, then
likewise M(4") = 0.

The above two paragraphs imply that «(4) can have
at most two singularities at say 4, and 2, and these by
positivity must be first-order poles with positive
residues. Furthermore, unless «(0) =0, R,(T) will

B, real.
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have a higher-order pole at 4 = 0 and thus not satisfy
positivity. We have

P

a(d) = EQ) + —22— 4 P2
A—Ag

A—1

b

where E(4) is entire and p, and p, > 0.
The normal ray limit now implies F(2) = 0 and
p1 + p: = 1. To have «(0) = 0,we must have

(p1/ =241) + (po/ —22) = 0,
which shows that 2, # 4, and 4,4, <0, say 4, <
0<,.
We find

pr="2of(Ay — Ay), po= —A/(%p — 4.

Now let A4, contain A; but not 4, and let A, be
disjoint from A4, and contain 7, but not ,; set
A = A, U A4,. After a computation:

Miay = o (B el
Ao — M \—gldy»  g¥A]
Mty = - —2—( b ),
do — M\—glhs» 23
1
M(4) = 1
% ( Ay — 4y, —g(As/A, — }*1/}*2))_
— g2y — M[h), g/} — A[23)

By Lemma 4 we see that the null spaces of M(4,)
and M(A,) must be orthogonal with respect to M(A4)
s0 we must have

(_g_ 1 Ay = Ay,
A

) (—g(/’lz/ll — Af2y), P }“‘/}”2))

8(Ae/ A5 — 44/2)

(2

which is easily computed to be satisfied.
We now have the solution
¥Y_=Y%,=¥, =C20 L¥R),
(U h,v® k)= utMo + (b, k)ps,

where M = M(A) exhibited above,

8oty = (J2)) o5

and
E(A) = y4(—A)P_ + 2 4(A)P, + x4(0)Pps,

where P_ is the projection onto the subspace generated
by the vector (“/*) ® 0, P, is the projection onto
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the subspace generated by the vector (~%/*) @ 0,and
P;. is the projection onto the direct summand L3(R).
The renormalized T and T, thus has a null space of
infinite multiplicity and two singlets of energy 4, and
A, , respectively.

Formally, if we solve T(fy,f;) = A(fy, f1),we find
that for (0, f) with f(0) = 0 we have T(0, /) = 0 and
so A=0. Assuming formally A 0 yields the
formal solutions (1, +48(x)/[6(0)]}) with eigenvalues
Fg[6(0)]}, thus “renormalizing” §(0) to g%4 and
considering (0, 6(x)) to be a new discrete state,we get
two eigenvectors (1, £gd(x)/2y) with eigenvalue FA;
these visibly correspond to our solutions above if we
take —A;, = A, = 4,. We note, however, that our
methods do not “renormalize’ the expression 6(0) to
the same value in each of the two eigenvectors. We do
not know what additional criteria are needed to
accomplish this.

We still have not discussed the case that « is non-
singular but in this case «(4) is an entire function and
the ray limit implies a(4) = 0 so that ¥_ =%, =
Y. = L*(R) and T} is the zero operator.

Both of the above solutions are decomposable and
well dressed.

For the intrinsic structural properties of T' we may
note the pole in R; at A = 0 with residue j; the fact
that J is always a linear combination of j, of the
creation operator C+:(fy, fi) ~— (0, fo6(x)), and of
the annihilation operator C:(fy, f7) ~— (f1(0), 0);
and lastly the impossibility of making either 4, or 1,
zero.

Example 17: Let us now do the discrete Lee model
by the multivalued methods. For simplicity we assume
0 < 4; < 4, < -+ + with no finite accumulation point.
We further assume p, # 0,which in particular means
that p¢d and we are in the nontrivial case. We
restate the results for R,(T) and S, (7),calling a(2,)
by a(4) now:

for

}'#}‘k’ kZL

R, = (a(l)f0+cx(/t)z ff_p'} ""’Afz

foPk l( fipy ) P )
+al) B0 4y (30N L),
where «(3) = a(2);
= (nfo, f1:fos " )s

where 7 is real.

For normal ray limits we must have = 1.

We assume analyticity off the real axis in a neighbor-
hood thereof and we assume the measure condition.
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Let
Picfi
Uy =+ 3
and let /= (fy, f;,fa» * * *); then we find that
(6 Raf) =g DY D + 5 2L "
and so

S IASf) = w1 f, Rif ), 4)
= waMF DY ), A) + Z 7400 | fil®.

The measure condition implies that a(A){f(A){f (2)
must satisfy the measure condition, which, taking
f=1(1,0,0, - ),means, in particular, that « satisfies
the measure condition.

We shall at this point assume that «(4) has nothing
but first-order poles on the real axis; that is, that
u(a, dA) has no part which is absolutely continuous
with respect to Lebesgue measure. This is based on
the heuristic principle that the analyticity domain of
R; be as large as possible while still keeping the result
useful. This assumption will be justified a posteriori by
the interesting and natural class of resolvents that are
so obtained. We call the real poles of «(2) by 4,,where
v € N and N is a countable set. Let r, be the residue of
a(4) at A = A,. We see that «(A) must have a zero at
A = Ay, k > 1,in order that a(2){Z(4){f (1) not have a
higher-order singularity there which would contra-
dict the measure condition. We take a(4) ~ (4 — 1,)8,
atd=4,.

A simple calculation reveals

<g’ J(A)f> = vgvx:i(}“v)rvzg-(}“v) g(}‘v)

+kgle(lk)g-kfk(1 + ﬂkplzc)-

This is explicitly a decomposition of J;for it we take
for Z the disjoint union N v N; for 3 the ¢ algebra of
all subsets; for A(z) the function A(v) = 4, A(k) = 4;;
for y,,

wz=(19“.9 P'k“‘l“,"')’ z=vy€N,
ke

=(0;03' '9011’0"'.)’ Z=kEN,

where the 1 is in the kth place,

and for u(dz) we take the point mass of weight r, at
ve N and the point mass of weight (1 + ﬂkp2) at
k € N; then clearly

JA) = f w2 (vl p(d2).
Alz)ed
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Let us designate an arbitrary function / on Z by

I= (lv H lk)
The dressing transformation is given by

@, =fo+ 325~ @,

Ay — A
A = fi-
The indefinite metric in L3(Z, |ul) is given by

n(hv » hk) = (sgn (rv)hw sgn 1+ ﬂkpli)hk)

We cannot impose well dressing on R, unless we
rig L¥Z), and although there is no canonical way of
doing so,we pick the following: Let ¥'_ be the set of
functions (4, , #;) € L? which vanish at all but a finite
set of points of nonzero weight. For'¥", we pick the set
of functions (¢, , ¢;) with arbitrary components. The
pairing is of course

o ) =3Ity + S + Bipdl it

Strictly speaking , because of the possibility that
1 + B.p2 = 0 for some k,one should use equivalence
classes but for convenience we express everything in
terms of representatives.

If we consider A to be in M(®,,¥,), then we find,

for¢= (¢0;°",¢k,"')6®+,
A= {(¢,, 90| ¢, € C}.

A computation now shows that if «(1) s O,then R; is
well dressed in the loosest sense but not in the sense
1/(A — Tg) = AR, A unless B, = —1/p2. Thus the
resolvents that are analytic at A = 4, are singled out
from the others by being in a sense better dressed. We
continue to study only this case.

If «(4) were to have any zero other than at 4, then
R,(1;0,0, - --) = O at these zeros and nondegeneracy
rules this out. We are now thus confronted with the
construction of a function which has zeros of the
form (—1/p2)(4 — X) at 4 = 4, and only these. If we
set (1) = 1/x(1), then 7(1) must be meromorphic
with poles of the form —pi/(A — 4;) at A = 4, and
only these. The most general function of this form can
be written as

=50 -3 () 72

where E(A) is entire and the n; are integers picked so
that the series converges to a meromorphic function.

There are now two possible situations: Either it is
possible to take n, < # where n is a fixed integer or
else it is impossible to do so. We first study the
former case.
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There are in addition two important subcases to
consider:

(1) One can take n, = 0;

(2) one can take n, < 1 but not n,, = 0.

If we can take n, = 0, then

0 2
() = E@) - 3 - f ka )
= %

Imposing the ray limit,we must have 7(4)/A — 1/ as
|A] = oo along |A] €%, 8 5 0, 7. Since

2
1 > P o,
ATA— 4,
we must have E(A)/A— 1/n, which implies that
E(A) = (A/n) + o, where o is real. We see that we can
take a normal ray limit # = 1 and then we have

2 _fi

AD)=44+¢ kgl}.—ﬂk.
This reproduces precisely the formal result if o is taken
to be —A,. Thus, in case I(1) =2 p2/(A — 1)
converges,our methods single out the formal solution
up to a choice of o. These solutions satisfy positivity
in the whole upper half-plane and are analytic off the
real axis everywhere except for A = co. We further
note that these solutions are not restricted only to the
case of boma-fide operators T which would mean
> p} < co but also include generalized operators
which are not bona fide since we only require that
EP:/ A < 0.

To get an insight into the general case,consider the
formal sum I(2) = 3 p%/(A — ;) even in the case
when it is divergent. We note that the sum

A
I = - —
®=3(7) 7%
is a subtracted sum obtained from I(4) by subtracting
the first n terms of the Taylor expansion of /() about
A=0

A
I(A) = -] ——
D=3 5
= I(A) — I(0) — AI'(0) .
A e
+ v —e— 7RO
n—1! ©
so that in case we can take n, < nbutnotn, <n — 1
we see that 3 (A/A,)"p%/(A — ;) is obtained from I(4)
by subtracting a polynomial of degree n — 1 with
divergent coefficients. One could then consider a
further adjustment by a polynomial of degree n — 1
with finite coefficients and so whenever we can take
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m, < n but not n, < n — 1, we obtain a choice for
7(4) of the form

. o (A
r2) = A+ o+ Py ?(zk)z—z,;
Here P,,_, is a real polynomial of degree n — 1. Notice
that if it is possible to take n, = n,then it is not
necessary to take all the n,, equal to n,for we could take
any finite, and possibly some infinite, subset of them
to be less; this,however,corresponds to a change of
P, _,; the presence of P,_, is therefore reasonable
since there is no a priori reason to *“‘renormalize” the
whole sum Y p2/(A — A),for one could single out a
convergent subsum and then “‘renormalize” the rest.

The above formal game is of course very familiar in
theoretical physics where one adds counterterms to
divergent formal expressions to make them converge
and then allows for the possibility of further adjust-
ments by finite counterterms of the same type as the
infinite ones.

In case we cannot take n, < n,then we see that ()
needs an infinite number of subtractions and we do
not have an argument, not even a formal one, for
singling out a particular E(4). We do not pursue this
case further; it corresponds to the so-called “non-
renormalizable’ case of conventional formal theory.

We note thatin case n = 1, P,_, must be a constant
which we can absorb into ¢; we have

© 2

T \L/A— 2,
The above expression would also be the formal solu-
tion if we take A, to be infinite. Letting Ay = —o +

> p}/ 4 in T,a formal calculation will yield the 7, given
above;thus in this case we can obtain the solution by
adding an infinite counterterm to 7, namely by
adding

K:fw—as((—0+ (2 P:/lk) ~ 20)£4;0,0,0--)

to the original 7. This counterterm is of the same form
as an ‘“‘adjustment of the vacuum self-energy.”
Whether 7, for n > 1 can be achieved by suitable
formal counterterms in 7’ we do not know.

We note that 7, satisfies positivity in the whole
upper half-plane,for we have

L= 3 (ARG — b

= g(lllz - }'}'k)PIi/}“k |4 — lklz ’

whose imaginary part is —Im 4 3 p?/(A — 4,2 and so
Im7, =1TImA(l + 3 p¥/|A — 24,[>) > 0 for Im 1 >0
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and so Im a(d) = —Im 7,()/|7(A){* < 0 for Im 4 >
0. This also implies that =,(4) has no complex zeros
and so «(4) is analytic off the real axis. A computation
also reveals that R, itself satisfies positivity in the
whole upper half-plane and is analytic except for
poles at A = A, where A, are the zeros of ;(4). Now
7,(2) is a Herglotz function’* and so we have
along the rays |A|e®, 5 0, m,that 7,(4)/A — 1 and so
the normal ray limit is satisfied.

We therefore have that in the two distinguished
subcases we are able to satisfy all of our requirements.
These two subcases contain not only the bona fide
discrete Lee models but also certain generalized
discrete Lee models including the ones requiring an
infinite formal adjustment of A, but no further
renormalizations.

Let us now return to the general case of n, < n but
not n, < n — 1 where n > 2. Consider

LD = A 3 el g — A) = AH (),

where H,(3) = 3, p?/Ar(A — Xy); H,(7) is manifestly
Herglotz and if along the rays {4| €%, 0 # 0, wAH (1)
were to have a finite ray independent limit,then this
limit would be's > p3/A7 ,which,however, diverges by
the choice of n. We must therefore conclude that for
n > 2 the normal ray limit cannot be satisfied.

The next question we want to consider is whether
one can pick P,_; so that the residues r, of () at 4,
are positive, This has a simple geometricinterpretation:
If we draw the graphs of I,(A) and of A + o + P,_,(4),
the latter must intersect the former from below. The
only possible unavoidable difficulty can occur in the
region 4 < 4;. Now I,(2) is monotonic in the region
—o0 < A £ 0andJ,(3) > +c0as i | —oo,depending
on whether 7 is odd or even; furthermore, I,(1) —
—oo as 4 1 4, and we see that it is indeed possible to
pick P,_, so that r, > 0.

Finally, we want to know whether 7,(4) has any
complex zeros. If it does,then R, will not be analytic
off the real axis but will have poles at these locations.
Now 7,(4) certainly can have complex zeros since for
example if we look at the equation 7,(i) = 0 we see
that for n > 2 we can always pick the real coefficients
of P,_, so as to satisfy the equation,showing that at
least for some P,_;, 7,(4) has complex zeros. We have,
however, been unable to determine whether one can
pick P,_, so that 7,(1) has no complex zeros and
furthermore if that be possible whether we can in
addition satisfy positivity.

Let us now consider the effect of introducing a cut-
off into p:p; = p.hy such that 0 < /, < 1 and such
that with the cutoffthesum 3 (p)?/(A — 4,)converges.
We note that as the cutoff is removed,the function
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7(4) does not converge to the corresponding function
without cutoffs; only by subtracting from =(4) an
appropriate entire function depending on the cutoff
do we obtain a converging limit. This observation
sheds light on the behavior under cutoffs that was
noted in Sec. IIF; there these subtractions were not
taken into account and the limiting situation there
actually corresponds to the case «(4) = 0 which we
have not considered.

For another insight into this model let us apply
analytic subtraction to the well-dressing equation
[1/(A — TR)IA = AT. We take T, to be a multiplica-
tiOl‘l on lF—f— given by TR("/)\" '»Uk) = (lvww A’k’/’k); then
we find that the well-dressing requirement gives

_ Prfr
T U0 =YD+ 3 T
. < Pi
oI A zu Z a0 — )
1
l—lkfk—_—l— fk+°‘(/1

if 1 + B.p2 #0.

So unless «(4) = 0,we must have §, = —1/p%. Using

the identity

1 1 ( L1 )
A—AA—4) 2=24\A—4 A-2)’

we find that the first requirement leads to

Pr
- =1
Z—l Zl—-/‘l)

For this to make sense we must have

—2,
+za A

equals a constant independent of »; so

a(h) = (/1 +o-3 Pkl)_l

and the A, are determined by the equation

oc(A)(l ~L+3

S __ P
A+ o —

’ 2 A’v - }“k
and this is precisely the answer we obtained by other
methods. We see therefore that certain considerations
of analyticity along with well dressing appropriately
interpreted is all that is necessary for this model.

One begins to see from this example that the purely
multivalued approach to the resolvent is at times a
coarse method at arriving at the intrinsic structural

=0
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properties of T,for we can arrive at the same results
more quickly by methods using analytic subtractions.
We believe that for the discrete Lee model the con-
clusion that 7(4) must have a pole of the form —p?/
(A —A,) at A =4, is an expression of an intrinsic
property; what other intrinsic properties have been
exhibited in the above calculations is not very clear.

Example 18: Let us now consider a generalized
operator Ton C ® d® d?* = C @ d’ @ d?* defined by

T(fo, fis fi5)
= (Aofo + ngfz +i_z=10'ijfij,

Afi+ pifo + lejfji, Aishii + pif; + Gijfo)s
=

where 49, 4,, A5, p;, and o;; are all real numbers. The
multivalued approach is a bit crude here,for we have,
whenever p ¢ d,

7-‘(¢0 ’ ¢i ) ¢i.’l‘)
= {(«, B, }‘z‘quij + pibi + 04,50) l «, f; e C}
and a computation of K, will reveal that the possi-
bilities for the resolvent are too numerous. We now
apply orthogonal methods. Let ®_, = C ® d, ®_, =
d3%then
Ta:(fo, f) ~— (Ao fo + z pifis A:fi + pifo)s
Tw:{fii} ~—  0iifis> 2. pifis)s
Tor:(fy, £3) ~—> {pefs + fo0:}
T22:{fi7‘} ~—> {)‘ijfii}a

SO
fu )
2=

By analytic subtraction we find

TP Ty :(fo, f2)

Piclfit— |

—— N + f zapz
(f"gz—zz, 21 ’zzlz—z,,
b Pz _Pi%
h2 zl,+f°,§ A=A )
Let now
L] 2
=4
Ao(4) 9 +1 JZ_I P Z”
pi(A) = p: +§f oo
7 7 < A—l“
Ail = S
=+ 3 0
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Then

T (o £)
> (Aowfo + 3 p0fis 10+ pi(z)fo).

We see that @, can be computed by orthogonal
methods in precisely the same way as the discrete
Lee model. Let

«(l) = (z =S _Bﬁ)f_)_l

=14 — A1) ’
© oA f;
Dilfosf) =1+ 2 I%%:‘i);

then

01 (fos fi) ~—> (a(zm(fo,ﬁ),

Ji pi(%) DD .
PP Y S YT "(fo’fZ))-

We can now compute R; without introducing any new
subtracted sums.

Example 19: We now consider a rigged Fock space
which is the direct sum @, ®™, where ®© is

C < C and @™ is d" = d™. Define the generalized
operator

el
(n) —_ (n) (n+1) (n—1)
(Tf)1:l1" = }'il"‘in iyin + zlplflil"'in + Piy ,;;.L..i".
1=
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Note that if we introduce the annihilation and
creation operators

(-qu)Zf)z,, = 6i1k z'(;t-_-il,,)9

(S )1(:”1,, =f k(1?+11),, ’
then T= A+ X2, p,(#4 + #4), where A is the
diagonal part of T.

One easily sees that if p ¢ d,then Ty = @, so that
the multivalued approach is totally ineffective unless
supplemented by additional analysis. For example,
if we write ® = ©, ® ®,, where

N . ot .
O, =@D? and ©,= @ OV,
i=0 i=N+1

then Ty, @ Ty, is strictly smaller than T,and given a
resolvent for T,, the problem can be treated by
orthogonal methods. On the other hand, Top, = @,
and so the original problem is not entirely avoided.
To treat this generalized operator adequately,one needs
an infinite nesting of orthogonal decompositions to
arrive at something like an infinite-continued fraction
expansion of R, with possibly an infinite number of
subtracted sums. Let @™ = @7 ®™;then if we nest
according to the graph

/

o))

[183]
OO -pw owm

then the infinite continued fractions in R; can actually
be computed. We give only (R;)g, here:

(Rioo =

A=dy—3

2
i=1

Example 20: We now study an example which
exhibits a further difficulty: On D(R?) < D'(R?) let
T be the generalized operator of multiplication by
t(x)6(y) where t is a real C* function:

(TF)(x, y) = t(x)8()S (%, ¥) = t(x)f (x, 0)3(y).

Now if f;; is an approximating net for the distribu-
tion 7, then it is possible to pick fi; in such a way that
fu(x,0) approaches weakly in D'(R) any given

distribution ¢. Thus we have
Tr = t(x)D,0(y) = {t(x)a(x)d( y)] o € D'(R)}.
Straightforwardly solving for the resolvent,we get

Ry = %T + DS, A0,

Ror = D'(R?) if 7e1(x)D.E(y),
= @ otherwise,
8,7 =1 + t(x)D.S(p).
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The g-operator versions of the above are

R.f = %f + ()P NB0), A £0,

R, f=0 if f=0,
= & otherwise,
Sof = f + t(x)a(x)()y),

where p;(x)(f) and o(x)(f) are in D’ and depend
linearly on f.
Hermiticity requires that

(g(x, »), €x)p,(x) I = (f(x, »)10x) pAx) N y))

or

(8(x, 0), t(0)p,(I(f)) = (f(x, 0), t(x)px(x)(g)-
Now this requires t(x)p,(x)(f) to be of the form

Hx) f r.(x, 2)f(z, 0) dz,

! .
.5 furthermore

1x)r(x, y) =ty X).
Similarly,

HR)o()(f) = 1(x) j s(x, 2)(z, 0) dz,

where 1(x)s(x, z) €D, , and

where t(x)r;(x,2) €D

t(x)s(x, y) = H(y)s(y, x).

Now it is in fact fairly apparent that one can find
appropriate r, and s to satisfy all the conditions so
far expressed; however,the difficulty again is that there
are too many such solutions. From the explicit form
of T one can,however,write down what answer seems
appropriate: One should like the renormalized
Hilbert space to be say

L2(R?) @ L3(supp (), y dx),

where y > 0 is a constant, and for Ty, to be given by
T(f (x, y) ® g(x)) = 0 ® Bt(x)g(x),

where fe€ R is another constant. The dressing
transformation is then given by

Af =f(x,») @ f(x,0).

This choice corresponds to the choice

1
ri(x, y) = ;@xmpm(x)z—_—%—m 8(x — y)

and

s(x, y) = ;(—tcsxsuppm(x)ya(x — .

GEORGE SVETLICHNY

Formally since T is a multiplication operator, the
eigenstates are y,, = 0(x — a)d(y — b) and Ty, =
H{a)o(b)y,, so Ty, =0 for b 0 or t(a) = 0 and
Tya0 = 1(a)0(0)pa0 = Au¥iao-

In the solution for r; and s presented above 6(0)
has been “renormalized”” to the number g and all
generalized vectors of the form y,... ., (X)A(x)3(y),
where # e L%[supp ()] have been made into new
bona fide Hilbert space states in L(supp (2), ¥ dx).

We have now to extend our program to be able to
do two new things: Show how the solutions in which
r, is “diagonal,” that is,r,(x, y) = r,(x)d(x — »), are
singled out; and then show how the solutions r,(x) =
[1/t0) ) Xaupp 0y (X)¥/[A — Bt(x)] are singled out. We
note that the second part is independent of the first
since if we had chosen r;(x) = [1/¢(x)]Xsupp (1) (*¥)1/
[A — u(x)], where u(x) is any real measurable function,
then we still would have a solution satisfying all our
conditions. Notice that this solution corresponds to
the case in which formally 4, = #(a)0(0) has been
“renormalized” to w(a) so that 8(0) has been “re-
normalized” to u(a)/t(a),which renormalization,how-
ever,depends now on a. Unfortunately, we have as yet
been unable, except for the comments to follow, to
formulate effective conditions to pick out the “natural”
answers.

One begins here to appreciate some of the difficulties
of the muitivalued approach,noticing that the new
conditions cannot refer to R, and §, alone (or
equivalently to T alone);for in these relations the
space t(x)D_6(y) occurs and one can find many other
C? functions w(x) such that ¢(x)D_d(y) = w(x)D_6(y)
and so the function t(x) has become lost. Thus it is
necessary to consider T itself along with T and to
explore more thoroughly the relationship between a
generalized operator and its closure.

We isolate one part of the difficulty by the following
observation. Consider a direct sum of two rigged
Hilbert spaces ® = @, @ ®,, and let T be a direct
sum of two generalized operators T = T, @ T,. Then
clearly T=T,® T, and R;(T) = R(T)) @ R,(T2);
however,it is not true that any g-operator version of
R, is a direct sum R,(T,) ® R,(T,) of g-operator
versions of R;(T;) and R,(T,), respectively. The
reason for this is easy to see for R,(Ty) and R,;(7T>)
are in general multivalued and this heuristically
speaking is expressed by saying that R,(T;)f contain
arbitrary parameters; now in picking a g-operator
version of R, (T) these arbitrary parameters must
become functions on ®_;but as ®_ is a direct sum
®_, ® @_, we see that an arbitrary parameter in R ,(7;)
can now become a function of f€ ®_ which depends
on the part of fin ®_, and this will violate the direct
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sum decomposition. This leads to the possibility of
choosing a nondiagonal r,(x, y) above, for multiplica-
tion by #(x)d(y) is formally a direct integral of multi-
plications by the & function in D(R) < D'(R). We
now introduce two conditions to partly overcome this
problem.

Condition 10 (Weak diagonalizability): We say that
a W+ closed subspace L of @, is a weak invariant
subspace of a generalized operator T if first of all the
Wt closure of L N ®_ is L and furthermore if
T(LN®_ )< L We see that @, and {0} are always
weak invariant subspaced and these may be the only
ones. We say that a resolvent R, of T is weakly
diagonal if whenever L is a weak invariant subspace
of T,then it is also a weak invariant subspace of R;.

Notice that this condition forces the resolvent for a
direct sum to be a direct sum of resolvents, for we have
that @, ®0 and 0 ® @, are weak invariant sub-
spaces and therefore in picking an R, © R; we are
forced to take a resolvent of the form R,(T}) @ R;(Ty).
This is the same result that is obtained if we compute
R; by orthogonal methods applied to the decomposi-
tion @, ® @, since in this case T}, =0 and T = 0.

For the case of multiplication by #(x)d(y) if we
choose the family of weak invariant subspaces L,, =
{p € D'(R2) | supp (¢) < la, b] x R}, then we find
that r,(x,y) must have its support in the set
{x = y} though it need not be of the form r;(x) x
8(x—y).

The existence of weak invariant subspaces of T is
very sensitive to the rigging. An example that illus-
tratesthis dramatically isthat of the bona fide operator
g of multiplication by x on either D(R) < D'(R) or
8(R) < &'(R), where §(R) is the Fourier transform
of D(R) and &'(R) is the Fourier transform of
D'(R). In the first case, every subspace of D’ having
suppott in a closed interval is a weak invariant sub-
space of ¢; in the second case, because every element
of §(R) is an entire function we see that the only weak
invariant subspaces of g are {0} and &'. It is useful at
this point to introduce a new notion: We say that a
rigging is diagonal with respect to a generalized
operator' T if in some appropriate sense the set of
weak invariant subspaces of T is as large as possible.
A diagonal rigging like a complete rigging is one which
is naturally adapted to the structure of T'; furthermore
a diagonal rigging is in a sense one which comes
closest to the attempt at constructing a rigging which
exhibits only the physically relevant generalized
eigenvectors of T and should thus supply the most
natural extension of the Gel’fand-Vilenkin formalism.
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Diagonal riggings and complete riggings stand at
opposite extremes in this sense.

The above considerations touch upon the notion of
direct integrals. We shall here give a rather unnatural
but useful notion of a direct integral of rigged Hilbert
spaces. Let @ be a rigged Hilbert space;then we say @
is a direct imtegral of rigged Hilbert spaces ®,,where
x € X and X is a measure space with a measure y if
Dy = [© @y u(dx) a direct integral of Hilbert spaces,
®_ is a subspace of the space of vectors of @, of the
form [ f.u(dx), f, € ®_, and each ¢ € d, can be
expressed as {® ¢ u(dx), ¢, € ®,,. We now introduce
the following:

Condition 11 (Direct Integral Condition): If ® is a
direct integral of ®, and T a generalized operator of
the form |® T u(dx), that is,

@ @
T f fuldx) = f (T, f)u(dx),

where T,:®_, — @, is a generalized operator on @,
then we require that R, = {® (R,)u(dx), where
(R;), is a resolvent of T,. '

If we view our example as a direct integral of
multiplication by the é function, {® M, ., dx, then we
are forced to take r,(x, y) to be r,(x)d(x — y) with
ra(x) = [1/t0)]xgupp 0y (¥)1/[A — u(x)] but still we do
not single out u(x) = ft(x).

Example 21: We now want to consider the NO
sector of the Lee model in n space dimensions, n > 1.
We work with the rigged Hilbert space

CaoD(RYH< CoD'(Rw
and with the Hamiltonian

. £k
T 0sJ1) &— | — 5
s 1) ( =
w00 — JEEL ).
20(k)]

Here w(k) = (m* 4+ k®)! and Q(k) is a C* cutoff
function 0 < Q(k) < g, where g is the bare coupling
constant. We introduce the cutoff function in order to
be able to compare our results with the conventional
ones but of course we shall also be able to work in the
case Q(k) = g,. We assume @ ¢ D(IR"),for otherwise
T would be single valued and the results could not be
extended to the case of no cutoff. One sees imme-
diately that

Ty = T (o, 1)
(e, oy — 2 ' cl.
:(“ k) [2w(k)]*) e }
where p, € D'(IR").
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The resolvents are easily computable; they are:

A¢[m, ©) c R:

Hap = {(“ A —lw(k)< (k) — o [2Q((k;] )) ‘“e C};

A€ (m, ©):

+ Bk)o[A — w(k)]) aeC,pk) e iD’(S"‘l)},

where we have put the expression
{1/A = o®D{p®) — «Q®)}/ 2o

in quotes because this is ambiguous as a distribution
but it is defined up to a term of the type Bk)S[A —
w(k)]. Here k =k/k|| and S"! is the (n —1)-
dimensional sphere. Furthermore,

A= m:

" 20 (k)]*
+ ﬂaao)

o, pe (E},

where we have a similar meaning for the quotes as
above. Finally

8oy = {(x, y1(k)) | @ € C}.

A g-operator version of R, for 4 ¢ [m, o) is of the
form

R.f = ( )

a— w(k)(f‘(k) ~ ) [23%]*))’

where «, is a linear map ®_ — C. Hermiticity requires
now that

FRQK) K
() = o )( f [ — w(k)uzw(k)l*)’

where
a(d) = T}T).
Likewise
Sof = (a(f), f (k)

and symmetry implies «(f) = yfq, y real.

Because of analyticity properties we shall not need
versions of other relations.

It is convenient to introduce the following map:

N f AR K
* I = o®]Rodk)E

= (&),

where 4 ¢ [m, ).
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We assume «(4) is analytic off the real axis in a

neighborhood thereof. Let f = (f_;, f,(—k)).
One easily finds for 4 ¢ [m, o)

gl(k)fl(k)dnk
w(k)

We assume the measure condition,which means in
general that «(A){Z(4){f (1) must satisfy the measure
condition and particular implies that «(1) must satisfy
the measure condition, for if we take f = (1, 0),then
 Rif) = a(A).

If we assume positivity on (m, oo),then we can show
that «(4) cannot have a pole there; that is,x(4) is not
of the form f/(A — 4y) + y(4) when u(y,dA) is
absolutely continuous with respect to Lebesgue
measure in the vicinity of 4y. This follows from the

fact that a(A)(L /YA )(A) for fy = O is
«(h) ( f 70K / [ — m(k)][zw(kn*)

(8 Rof) = aALDALNA) + f

X ( ffl(k)Q(k) / 4 - w(k)][Zw(k)]é)

and it can be shown by taking f,(k) to be a sufficiently
good approximation to d(w(k) — 4,) that the expres-
sion does not satisfy positivity.

We assume that u(ax, dA) is therefore absolutely
continuous with respect to Lebesgue measure

(e, di) = (—1/m) Im (%) dA,

where we write «(4) = Re a(4) + iIm «(4) along
(m, o0).

We can now also show that by positivity Im a(4)
cannot vanish on any interval 4 < (m, o0). Under the
assumption Im «(4) = 0 on 4 we have for an interval

B < 4:

£, IB)f) = A DEF(DLf(A), B)

+ f 801 — w(k)) |f,(K)| dAd"k;
ASB

we see that the term proportional to [f,|?> does not
contribute since its coefficient is p(x; B) = 0. The

terms linear in f;, and ﬁ are
Lo + fohi(k)
(k)

Now unless Re «(4) = 0 almost everywhere on B,we
cannot satisfy positivity,for no matter what f(k) is
we can always choose f;, so as to make the above
expression sufficiently negative to make (f, J(B)f)
negative. If Re «(4) = 0 almost everywhere on B,then

along with Im «(4) = 0 and analyticity we conclude
that «(4) = O,which is not an interesting solution and

f 8( — w(k)) Re a(A) O(k) dAd"k.
A€B
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we discount it. Positivity on (m, o) therefore forces
«(2) to have a cut at least along (m, ).
It is convenient to write J(4) in terms of a matrix

J(A)= ( JO()’ JOl(k) )’
. Jm(k), Jll(kl ’ kz)
that is,

(g, J(A)f) = Joo8ofo + 8o | (k) f1(K) dk
+ i f T (g dk

+ f T (ks , K)ga(ko) f (ko) dk, dk,.

An easy computation reveals

Joo= — 1 f dA Tm «(h),
mJAa

Jou(K) = (— i L diTma(l); _Tw(k)
X ok)
D0 — w(k))) 2B
+ L dA Re w(A)d(L — o ))) WS
J 1o(k) =J ol(k),
Ju(k; , ke)
1 g g
=T L‘” Im o) T ) 7 — otk

+ [ L i1 Re a(d) (a_—%m 80 — (k)

+ 860 — (k) A_fT(kS)

+ f A Tm a(A)O( — w(k))S(@ — w(kz)):l
A

. _00)0(k;)
[4o(k)o(k)]

To deduce the consequences of imposing projec-
tivity on J is very difficult,so here we will impose
decomposability in (m, ). For A€ (m, o) the A
multiplet of T is degenerate over $™ and we intro-
duce the variable § € $*! to express this degeneracy.
Let us therefore consider the family of generalized
eigenvectors

+ f 804 — (k))o(k, — ko).
A

) o(k)
A — w(k) [2e(0)]t

+ Buk)o0, — w(k»),

where we have made a choice of the ambiguous
product of distribution in R,;0 by choosing the
principal value integral.

Yis = (’719, s
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Let K5 = |9,5)(w,,l and then writing K in terms of a
matrix of the same form as J,we get

Koo = I"?Aﬁlz,
e 7 (k)
Ko(k) =
0 ( ) In}.EI 1 — w(k) [Zw(k)]&
+ b0 — (k)
Ky = Ko,
Kp(ky s ke)

g § Q)0
A — aky) A — w(ks) Hok)olks)]t

T 0K g k260 — wo(k
7 — o(ky) [2w(k1)]i Balk)o( w(ks))
7 9(k,)

k)o( — w(k,
+ Bas(k1)d( k), 7 — wlky) 20 (kz)]*
+ 815k Buk2)d(h — w(k))O(A — w(ky)).

Let Q(dS) be the unit measure on S™* and let Q
be the volume of the unit sphere in [R" with respect to
Lebesgue measure. We take dAQ(d5) to be the measure
with respect to which the decomposition is to be
performed.

We define a few auxiliary functions

2
= |14l

+ s

x(A) = (12 — m)E, i is the inverse function to w,
1012 = f IQGHRIE Qdk),

Q(x(Hk)
ol

By a straightforward computation the requirements
of decomposability become

Qx(k) =

) f braal? QdS) = — 717“" a(h),

lol, 0.
et

3

@ f b kYQUdS) = Re o)

3) f Bl ko) dS)

= 7 Ima(d) QI3 Q%___l@z(@

1 )
+ Qr(A)™ A Ok ko),

where 8(k,; k,) is the Dirac 8 function on S$™*1:

f 8(ky; k) f(R)QUdk) = f(ky) for fe Co(S™Y).
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Let us introduce the following transformation for
fECP(S™):

(B)G) = Bislf) = f Bl £ () k).

We assume now, to be justified a posteriori, that B, in
fact defines a bounded operator on L*S™1, Q(ds)).
Likewise, let I be the identity operator on L2(S"~?)
and let Py be the orthogonal projection onto 0, €
L2(S"_1).

The requirements of decomposability now become:

(1) If we define 7,8 ~—> 124,then 5, € X(S™') and

1
Imsl* = — — Im o(2),
m

ol 9
(2) B3, = Rea(d) _—(5}%)‘}_1 s
(3) B3B, = |B,?
1

o Im a1 an Pt

For consistency since |B,|> > 0, we of course must
have

lIQlI2 1

(4) = Im (%) ~ G

For convenience we temporarily drop the subscript
A in certain expressions.

By the polar form of a bounded operator we have
B = W |B|, where W is an isometry, so B* = |B| W*
and (2) becomes

) Il 0,
B]| W¥), = Re a(4) =252,
B W = Realh 5

We further assume, under a posteriori justification,
that W* is an isometry and |B| is invertible. We have

Wiy = Rex) 18T 0.

Since W* is an isometry,the norm of the right-hand
side must equal | #;,|| and so we must have

e ”Q”).

lmal* = [Re a(@)] IBI™ Qull™.

Now
I1BI~* Q)2 = (IB|* 0, |BI™* Q) = (Q; |BI* 0)

and from (3) Q is an eigenvector of |B[? with eigen-
value

IIQII2 1

7 Im o(4) Qk(l)”_ll
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and so, since Q] = 1, (0, |B|~2 Q) is the reciprocal
of this number. Furthermore, |7, |2 is given by (1) and
so we have
2
~Llim a(2) = [Re a(A))? 1K
T 22

llQIIA 1 )“
Qx(l)”"/‘l ’

( Im «(4)

which simplifies to

Im o(2) = — 4w Que(1)" | Q|7 l( D

and shows that along the cut (m, o) the imaginary
part of «(4) is proportional to the square of its
absolute value. This is nothing more than the familiar
unitarity relation.

Introducing 7(4) = 1/a(4) ,we find the unitarity
relation is equivalent to

Im 7(3) = 47 Qu(D)" QI3
If this relation is satisfied,then a quick check shows
that the consistency condition (4) holds with a strict
inequality for almost all A and this implies that it was
consistent to choose * to be an isometry and to have
|B| invertible. If we now take B, = (|B,|*)}, where
|B;[* is given by the right-hand side of (3) and if we
take
= Rea(h) 0l B7 25,
@n
then decomposability is in fact satisfied. The unitarity
relation therefore is equivalent to decomposability in
(m, o0).
" Before-proceeding to further examine a(4) let us
compute what may be interpretable as the scattering
matrix of this model.

We take the following expression for the scattering
states p{F):

1 oK)
U PN
Vis (771: Nis 7 — (k) + ie [2w(k)]£

+ B8 B)OCh — w(k))).

These are precisely the scattering states in the usual
solutions except now Q(k) is not necessarily restricted
in any way; we choose the states in this way since we do
not know of any other possible definition.

We thus have

ﬂ(*)(fc) (;|;) "Q”l Ql(k)

et
We now make another formal assumption, namely

we assume the resolvent is decomposable with respect
to the scattering states. Now while this is a reasonable

ﬂ(:t)a(a k)
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assumption when Q is such that the conventional
physical interpretation is allowed,it need not be reason-
able in the general case; however,we make this
assumption not knowing of any other formal way to
determine #{*’.

Assuming (1) to hold,we find by (2) that we must
have

[t
— =o| W s 1012 8:(k) | Lo (j:)
= o [ WGP a9 = L
— +iIma(h) 120 Ci5) 1911, Qa(k) Q;.(k) + pEy®
@t
1211z 0x(k)
= Re «(A) (‘1); .
So

fC —
[Re «(4) F i Im a(A)] lQl(‘;—,%(—) = B,

Since «(2) has a cut along (m, o) and since it satis-
fies «(A) = a(1),we see that Re a(d) F i Im «(d) =
a(d F i0), and we ﬁnally have
nfl:f) —_ ___ a(l 10) "Q"l Q;_(S) R
B et

The requirement (1): |92 = (—1/x) Im a(4)
when combined with the unitarity relation yields
after a quick computation

1

1B = QA
A computation of |B,|> now shows that (3) is in
fact satisfied and so we take finally
ﬂ(i) [Q K( l)"_l l]_*,
7 = Q™ T2 F 0) 101 0,(6).

The scattering matrix o,(§, f) we now take to be the
kernel which effects the transformation

v = f o8, DY Q).

This requirement consists of two parts coming from
the different components of y{3:

nG = f o8, DS (),

= 121, 9:(K)

ot ()21 7H8(s; )

21: Ok)
= §,t UNQ(dE) A0
= 0.6, Xm0 oy

+ [Qe(A)™ Ao (3, £).
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Assuming the first equation to hold, the second one
can be solved for ¢; to give

L0,
6,8 ) = 8(8; ) + 2mi[ Qe ATt ’“QE z%( )

or, substituting the expression for 7{~,
0,(8, ) = 8(5; 1) + inQu(A)™?
x «(A + i0) Q13 05O
Substituting this final expression into the first

requirement,one sees that it is in fact satisfied; use
must be made though of the relations

oA + i0)a(A — i0) = |a()?
_ 2
= el T IeR
4
P = iIm a(z)(m(%l)—,,_—l) 101, 0s.

Let us return to the function «(4). Consider the
region (—oo, m]. We shall assume that «(4) has only
simple poles there; as for the discrete Lee model such
an assumption invokes the heuristic principle that the
analyticity domain of R, be as large as possible while
still remaining interesting. This assumption has a
posteriori justification by the class of solutions it
singles out. Nondegeneracy requires that «(1) not
vanish at any regular point and we conclude therefore
that =(2) should be regular off (m, <o) along which it
has a cut. Since we know the imaginary part of 7(A)
along (m, «),the most general form for this function
is therefore

© n—1 2
) = 5 — g I8k,

m (A —)g®)
where g(v) is an entire function picked to make the
integral converge and E(4) is an entire function.

We see that g(4) can in fact be picked to be a power;
for Q)2 < ¢2 and «(A)"! ~ A" as A — oo so that
one can take g(A) = A". This is the best possible
choice unless Q is picked in such a way as to improve
convergence. Let n(Q) be the best possible choice for
a given Q; thus n(g,) = n. By the formal argument
used for the discrete Lee model we single out the
solutions

N=1+7+ Pn(Q)—l(l)
— %Q]_MO)

>

bl Ol (A
m (A _ ‘V)‘V”(Q)

where P is a polynomial of degree n(Q) — 1.

The case n(Q) = 0 is the conventional solution and
we do not discuss it any further except to note that
our results coincide exactly with the conventional
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ones. For no model is n(g,) = 0 since this would
imply zero space dimension.

The case n(Q) =1 can be obtained as in the
discrete Lee model by an infinite counterterm in T
which in this case introduces an infinite “bare V
particle mass.”” This solution satisfies positivity
(absence of ““ghosts’”), normal ray limit, and analyt-
icity in the whole plane save for the real physical
singularities. We have n(g,) = 1 in the 1-dimensional
model and so the l-dimensional Lee model has a
cutoff free solution obtained by an infinite adjustment
of the bare V particle mass.

The cases n(Q) > 1 have as in the discrete case
certain distinctive features. Thus the normal ray
limit cannot be realized and R; can have complex
poles. As before the polynomial P,,,,_; can be picked
so that the pole residues of «(4) on the real axis are
positive but we do not know whether simultaneously,
or at all, we can avoid «(1) having complex poles.

If we apply orthogonal methods to the N6 sector of
the Lee model,then as for the discrete Lee model we
quickly obtain the same result as above. We take the
decomposition ® = C @ ®,, where D,is D < D'. In
computing T, we are faced with the analytic integral

f QWP d,_ _ 10 f‘” ROl
2w(k)[A — w(k)] m (A=)

which, if we perform the minimum number of sub-
traction necessary, is given by

s Q[

m (l - ’V)’V"(Q) »

Vy

Ppgra(d) + 3Q47@

which then leads to the same result as before.

The outstanding intrinsic structural property of the
N sector of the Lee model we believe to be the unitarity
relation

Im7(4) = 37 Qu(D)" Q3.

What other intrinsic structural properties have become
manifest is, as in the case of the discrete Lee model,
not very clear.

D. Remarks

We now discuss in greater detail our views concern-
ing the various conditions. As was pointed out at the
end of the previous section,there are many generalized
operators that are candidates for a particular physical
problem; different candidates lead to different resolv-
ent relations and thus whether the above conditions
can or cannot be met depends on the candidate. The
intrinsic structural properties of the physical general-
ized operator should of course manifest themselves
most readily in a natural rigging such as the complete
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rigging or the diagonal rigging. However,even if we
do not choose these riggings,the resolvent relations
often still contain all the possible relevant information
and it is thus natural to ask to what extent do the
conditions reflect candidate independent properties.

Whether there exists a nontrivial Hermitian resolvent
depends on the particular candidate. For example,
consider the operator 7 f(x) ~— (1/i)f’(x) on either
of two rigged Hilbert spaces (1) D(0, o) < D’(0, o0)
and (2) D(0, o) = L0, o). One easily finds in case
(1) that there is no problem in finding a Hermitian
resolvent.

In case (2), however, we find that the only g-operator
version R; of R, is

Rif=w
=0

if f30,
if f=0.

There is thus no nontrivial Hermitian resolvent.

The difficulty here is of course that T, which is a
bona fide operator, is not essentially self-adjoint on
D(0, o). This fact,however, does not show itself in
the hermiticity condition in case (I) even though
hermiticity does imply a relationship between the
behavior of R, in the upper and lower complex
half-planes reminiscent of the theory of defects.

Because of this candidate dependence of hermiticity
it is best to use this condition in a natural rigging.

In general one cannot expect analyticity everywhere
off the real axis and this raises the problem of the
physical meaning of any possible singularities off the
real axis since these singularities will induce singular-
ities in “unusual’ places in various physically relevant
objects such as the scattering matrix. This became
apparent in the Nf sector of the Lee model where
there arose the possibility of complex poles in the
physical sheet of the scattering matrix. The under-
standing of these singularities we believe is best
achieved by studying their structure in actual physical
theories such as quantum electrodynamics or some
experimentally accessible solid state phenomena. As
such we have to wait for the development of more
powerful methods to construct the resolvents of these
theories.

The use of orthogonal methods determines some
of the analyticity properties,thus eliminating some of

"the choices. This fact should provide an approach into

more precise analyticity statements concerning the
resolvents.

The positivity requirement reflects the probabilistic
interpretation of quantum mechanics. If 4 ~— J(A4)is
not a positive measure, then one could of course
restrict oneself to a subset of IR on which it is a positive



GENERALIZED OPERATORS

measure. In this case, one is disregarding certain
singularities which are considered unphysical. If we
pick an R; such that 4 ~— J(4) is not a positive
measure we say that the resolvent has ghosts. Positivity
may often be impossible to achieve and similar state-
ments apply to it as to the analyticity requirement.

Some sort of requirement is needed to control the
behavior near A = o¢ and the ray limit is an attempt
at such a control. For a bona fide self-adjoint operator
the fact that the ray limit is [ is an expression of
the completeness of the set of eigenvectors; that is,the
spectral projections constitute a resolution of the
identity. The concept of completeness for generalized
operators is elusive both mathematically and physically,
for it is not clear whether the set of “bare’” generalized
vectors @, are all necessary or whether they are
sufficient for the mathematical and physical structure
of T. We say that the normal ray limits cannot be
achieved in many cases. A detailed description of
behavior near A = oo should reflect the various
subtractions made in constructing R;.

Both the nondegeneracy and the well-dressing
conditions are somewhat ad hoc but are useful in
limiting the choices. These two conditions also seem to
touch upon a notion of completeness and may be useful
in isolating such a notion. Well dressing in terms of
analytic subtraction,however,may be more intrinsic.

The measure condition is of course very important
as it stands at the foundation of any renormalization
program. We have formulated it only with regard to
the real singularities of R, but in view of the possibility
that analyticity everywhere off the real axis is in
general unattainable it may be useful to extend it in
some way to the complex singularities to arrive at a
generalized operator-valued measure on the complex
plane. This again brings in the question of the physical
role of “unusual’’ singularities.

The projectivity condition was introduced in order
to effect a renormalization program. It generalizes the
notion of orthonormal decomposition.

The condition of decomposability is closely related
to that of projectivity but is more candidate dependent:
The rigging may not exhibit the generalized eigenstates
necessary for decomposition. For example if T is a
bona fide bounded self-adjoint operator having a
purely continuous spectrum on a Hilbert space &, we
can consider it as a generalized operator in the rigged
Hilbert space (I, &, id). In this case for A in the
resolvent set, R, coincides with the bona fide resolvent
R;. By the spectral theorem R; is projective and J is
the bona fide spectral measure. The resolvent,however,
is not decomposable since @, = J does not contain
any generalized eigenstates other than 0: (7) = {0}.
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If, however, T were supplied with an appropriate
rigging, the resolvent would be decomposable. De-
composability is thus a useful condition only if one is
working in a rigging which exhibits all the generalized
eigenstates with real eigenvalues.

We find the state of the theory as presented in this
section very unsatisfactory for several reasons. The
process of arriving at a resolvent R; consists of a
search among many possibilities for those choices
that satisfy certain requirements. These requirements
were based on analogy and do not necessarily reflect
in a natural way the intrinsic structure of 7. What we

‘need is an explicit construction of explicit mathe-

matical objects rather than a search. Orthogonal
methods provide a step in this direction but are still
not very well formulated. Thus the present theory can
only be regarded as provisional, giving only certain
tools by which the intrinsic structural properties of T
can be found and later concretized into definite
mathematical objects which can be exhibited by
constructive procedures.

We believe that the following point of view should
be adopted to attack this problem:The passage from
T to J should be broken into two distinct stages;
first there is the construction of the objects intrinsic
to and uniquely determined by 7, and second there is
the choice of certain arbitrary elements which must be
present in any physical renormalization theory. Thus
in the discrete Lee model it appears that the residues
~1/p? of (1) at 4_is an intrinsic property while the
choice of E(A) must be influenced by extraneous
reasoning; likewise in the N6 sector of the continuous
Lee model the unitarity relation

Im 7(2) = 1)27Qr(2)" | Q|2

also appears to be an intrinsic property. A most
important question to ask now is the following: How
can one derive the unitarity relation without going
through the search procedure for the appropriate
restrictions of the multivalued linear maps R,? The
knowledge of > (T) and of the unitarity relation
should be considered as the mathematical answer
to the formal question: What are all the appropriately
normalized solutions to the eigenvalue problem? For
bona fide operators the answer to this question is
embodied in a cogent form in a definite mathematical
object, namely the resolvent. We have used this fact
to try to construct a theory of generalized operators
but because of the renormalization programs we now
see that the resolvent is not really the appropriate
object. The second important question is: What is the
corresponding appropriate object for generalized
operators ?
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In view of the above discussion and in view of the
remarks to be made later in Sec. V we believe it is now
profitable to modify the methodology somewhat and
instead of trying to further refine the conditions on the
resolvent we should try to approach the intrinsic
properties directly now that we have some idea of
what they are. This will be our main thrust in our
future investigations into the structure of generalized
operators.

The search for intrinsic objects is important in
another respect, for they should provide an approach
to generalized operators that are not symmetric; at
present we do not have even a rudimentary theory for
these.

IV. SEVERAL OPERATORS

In this section we would like to examine the question
as to what extent can several generalized operators be
treated simultaneously with respect to their structure;
in particular, when can they be simultaneously
renormalized to bona fide operators on a Hilbert
space.

There is of course the problems of candidacy: Is
there a rigging which is natural to all operators
simultaneously, and likewise is there a rigging which
is adequate to all operators simultaneously in the
sense that no information about their structure is
lost ? Since we have not pursued these questions in any
detail even for the case of a single operator,we shall
not pursue them in any great detail here even though
as we shall see they appear here even in stronger force.

There is here also a further complication: Given a
set of generalized operators one may not want to
renormalize all of them. For example, given a Hamil-
tonian T expressed in terms of a free field ¢(x, 0)
at t = 0 one would want to renormalize T but the
field ¢(x, 0) should again be re-expressed as a general-
ized operator. We shall call this the problem of
partial renormalization of a set of generalized operators.

The problems dealt with in this section have great
physical significance since the physical content of a
physical system is most often carried by a set of
operators satisfying various relations and conditions.

A. The Dressing Method

In this subsection we assume we are given a renor-
malizable generalized operator T on a rigged Hilbert
space ®. We denote by ' the renormalized rigged
Hilbert space. We also assume that we are given in
addition a set 8 of generalized operators on ®. We
now want to transfer the set 8 to'V" to get a new set Sy
of generalized operators on¥". In particular, in going
from @ to V" we would like to know if we can preserve
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various properties such as being bona fide, being
symmetric, being unitary, being essentially self-
adjoint, and so forth. Furthermore, if 8§ is a unitary
group or an algebra or in general comprises some
algebraic system,then one would like to reconstruct
again a similar algebraic system in V.

The most elementary approach to this problem,
which is the approach used in this section, is to use ele-
mentary function theory as it was used for the concept
of well dressing. Formally if A is the dressing trans-
formation, then Sp should be identified with ASA-,
More precisely, we consider A as an element of
M(®,,¥,) and § as a subset of M(®D,); we then
construct the set 8, = M(¥,) by

8q = {84 = ASA-1VASA-1|Se§).

This set constitutes the loosest possible interpretation
of the formal set ASA—1. As in the case of well dressing
a more stringent interpretation may also be effective
and at times be even more to the point but even if
more stringent interpretations are used,we shall still
call the resulting set 84 and consider these procedures
as also part of the dressing method.

For each Sy € 84 we now pick a g-operator version
Sr © Sg and so get a set Sp of generalized operators
in ¥. This set is obviously not unique and to further
restrict our choices we must impose additional
constraints. Such constraints would require, for
example, that S-~— Sy preserve unitarity, essential
self-adjointness, or any algebraic structure that the
set 8 may have.

To see the features and problems of this method,we
study a few examples.

Example 22: We take T to be the multiplication by
the & function on D(R) = D'(R). Let 8§ be the
unitary group U(¢) given by

UNNE) =flx + 1) = fi(x)-
A computatio_xgif U(t) either by the loosest method
or by U(t) = AU(t)A1 yields -

Uthoc={ho®a«|aeC}

A g-operator version of U(t) is therefore of the
form
Ult)gh @ c = h, ® a(t, h, ©),

where «(t, A, ¢) is of the form o, (1) + «5(t)c, the o,
being linear functionals on L? and C, respectively.
Imposing isometry,we must have |, ()k + ay(t)c] =
|c|? and since & is arbitrary,we must take «,(¢) = 0 and
|ae(f)] = 1. Imposing that U(f)r be a continuous
unitary representation of U(t),we get ay(t) = e,



GENERALIZED OPERATORS

where o is real. Thus
U()gh @ ¢ = h, ® €%

constitutes a reinterpretation of U in ¥’ in terms of a
unitary group.

Example 23: We still consider the same 7 as in
Example 8, but now let 8 consist of the single operator
S which is multiplication by 8, = d(x — y). We find

S = {ad(x — y) |a € C},
SA-"h @ c = Sh = {ad(x — y) |« € C}

and this is a closed relation; therefore,

ASA YA @ ¢ = 0;
likewise
ASr = A{ed(x — y) |ae C} = 0.

In this case we have 8§, = {0} and so S = 0.

We have here an example of a difficulty in adequacy;
the renormalized Hilbert space ¥ is not adequate to
express S as a generalized operator. Roughly speaking
the elements of ¥'_ are not “smooth enough.”” There
are two possible desirable constructions one can
pursue: (1) pass to a new rigging of ¥, possessing
smoother states than ¥'_ in which S can be reinter-
preted as a generalized operator, or (2) renormalize
both T and S simultaneously in still a different
Hilbert space. We shall carry through both of these
programs in the Sec. IVC but for now we proceed
with more examples in which 8 is a set of bona-fide
operators.

Example 24: Consider now the discrete Lee model.
We take the case when f, is not necessarily —1/p}.
Let now U(¢) be the one-parameter group

UOSf), = eY,, 0, eR.
A computation of AU(HA gives
UOR(y» ) = {(vy, € | v, € C}.
Any unitary group of the form
(hy, ) ~—> (W(Dh),, &*'hy)

can be taken for U(t) where W(z) is unitary on L2(N,
|u}). Thus, in case B, = —1/p} the dressing method is
so coarse that any unitary group in ¥ can serve as
Uit)g.

Example 25: On C @ D(R) = C @ D'(R) let T be
given by Tf, @ fi(k) = 0 @ ad(k)fy(k). A simple
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computation now shows that we have a solution
¥Y=(Caol¥(R)e C,CoLi(R)o C,id),

Ifo ®f @ cl® = Ifol* + Ifil* + B e, 8> 0,
Trfp@fi®c=000@ Ay,

&, @ fi = fo © £, ® HO.
Let 8 now consist of the ‘creation” operators
at(g): fo ® fy(k) ~>0 @ fog(k) and “annihilation”
operators a(g): fo @ fi(k) ~— (g, f1) ® 0, whereg € D,
g real, and (-, ) is the L* inner product. A com-
putation of 84 = ASA-1 now yields

a(@efo®fioc=00fgk)®a|aeC},
a@gfo®fi®c={(g®0&alacC}

We now notice the following feature: If we pick
a*(g)g < a*(g)g and a(g)r < alg)g and insist that
the two operators be formal adjoints of each other,
we would get a smaller number of answers than if we
had picked just any a*(g)r < a*(g)g and then taken
a(g)g to be the formal adjoint. In other words, if 8
can be generated from a subset G by certain generating
procedures, thencomputing first §; and then obtaining
8y by applying the same generating procedures,we
would in general get a different answer than if we had
computed 8, directly; this is so even when the set Sy
must satisfy algebraic relations. Still a different
answer would in general be obtained if we chose a
different generating set §'. This situation is in principle
expected but the dressing method does not allow
much further elucidation.

We shall not pursue the dressing method further
since it is very elementary and can give only a very
coarse view. It is helpful nevertheless in pointing out
certain features of the theory of several operators.

B. Remarks toward a General
Multiplicity theory

For a set of bounded bona fide operators the
relevant multiplicity theory studies the von Neumann
ring generated by this set. The spectral theorem in its
greatest generality expresses a von Neumann ring as a
direct integral of factors over the spectrum of its
center. This theory has a strong algebraic character
which however is intimately related to certain topo-
logical consideration. For the case of generalized
operators we have to replace the study of B(i€), the
set of bounded operators on a Hilbert space J, by the
study of appropriate subsets of M(®,), the set of
linear relations on a rigged Hilbert space @. There is
little hope yet for achieving a mostly algebraic theory
for even in the case of a single symmetric generalized
operator T the passage from T to the generalized
spectral measure J required analytic considerations.
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Possibly when the intrinsic structure of generalized
operators is well known,one could develop an algebraic
theory of several operators in terms of the intrinsic
objects, thus bystepping the analytic considerations
needed to pass to the generalized spectral measure.
We cannot pursue this possibility not having an
intrinsic theory;however,if we assume that starting
with a set of symmetric generalized operators we have
somehow picked the appropriate generalized spectral
measures, we can ask whether any form of a multi-
plicity theory can be constructed from this material.
The rest of this subsection contains an investigation
of this possibility.

A bounded self-adjoint operator S will be called a
hemiprojection if the spectrum of S is contained in the
points 0, 4, and 1. Therefore,if S is a hemiprojection,
then §$ = E(1) + 3E(3), where E(1) and E(}) are
orthogonal projections and E(1)E(3) = 0; moreover,
any operator of this form is hemiprojection.

Let now J and K be two positive generalized opera-
tors. We say that the unordered pair {J, K} is projective
if both J;, i and K g are hemiprojections. This is a
generalization, as we shall see, of the notion of a
projective pair when one of the generalized operators
is larger than the other.

Let {J, K} be a projective pair. We now have

Jrg =E;(1) + 1E;(3),
Kyix = Ex(1) + }E(3),
1 =Jsg+ Erx = E;(1) + 3E,(3)
+ Ex(1) + $Ex(3).

Multiplying this last expression for 1 by E (1),
E;(3), Ex(1), and Ex(}), respectively, we get a set
of four equations which can be immediately ex-
panded to eight by taking adjoints; we make use of
four of these:

(1) $E;) = E;(DEx(D) + E;(DEx(D),

(2) $Ex(}) = Ex(DE;(1) + $Ex(DE,B),

() $E,(3) = Ex(DE;(}) + IExBE; (),

(4) E;(DEE(1) + 3E;(DEE(1) = 0.
Multiplying (3) on the left by Ex(1),we conclude that
Ex(1)E;(#) = 0, which combined with (4) yields
Ex(1)E;(1) = 0. A combination of (1) and (2) now
gives E;(3) = Ex(}E;(}) = Ex(}) so that Ex(}) =
E;(3) = E(}), where the last equality is a definition.
We now conclude

1=E;(1) + Ex(1) + E})

and by Lemma 2 of Sec. III this is an orthonormal
decomposition. Let us now prove the following useful
fact:
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Lemma 6: If J > K,then {J, K} is a projective pair
if and only if J > K is a projective pair in the sense of
Sec. III.

Proof: We first prove the necessity. Since J > K,we
must have Jy x> Ky x or Ej(1)+3EQ) 2>
Ex(1) + 3E(}),which is possible only if Ex(l) =0
in which case K, x = }E(}). Now H; and H, g
are isomorphic since J-Cauchy and J-equivalence
implies by virtue of J > K, respectively, (J + K)-
Cauchy and(J + K)-equivalence.Thus, py s, x has a
bounded inverse

Prrsr B~ By f with |p7s gl <2

We have px; = pr.s+xpPss+x. Consider now the

map o:H; — H; given by p; 5 xE(})p; s+x; then
clearly 62 = o and furthermore

Asg pr. sk E®PT 16D s
= (pr.r+xBr+ k8 P17+ E®)Drixf)r
= (As1 k8 SEQA L x sk
= GEDA; k8 Bsixfosx
= Vs EDAs k8 Asix ik
= (ps, 7+ E®Asi k8 ProixDiixf)s
= (ps.7+cEQ)P7 715858 Dsf)s

shows that ¢* = o and thus o is an orthogonal pro-
jection. We now have

loAs fI5 = 1ps.ss kE@pT 5 A1
= lps sk EQAr  fI5
= [[EAD) + 3E®IEDA ;. xf 15k
= REDAs & f 15k
= |KpxBrixfl5x = 1A flk

and so K; = o and J > K is a projective pair.

We now prove the converse in much less detail but
in the same spirit.

IfJ > K and K is a projection, then H;, & can be
identified with H; by introducing a new norm
Walgix = (1 + KAl ;. In this way the subspace
K;H; becomes identified with a subspace F;, x <
Hy, . Let Fy x be the projection onto this subspace,
then it is clear that K;, g = §F;,x and J; . x =
QA — Fyr.x) + 4F;.x and so {J, K} is a projective
pairm

Introduce now the maps JA K:®_— ®_ and
J Vv K:®_ — ®L by the relations

(&8, JAKf) = (Drixg 3EDAs 1k laixs
JVK=J+K~—-JAK.
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We have

& JVKf)=(Asxg [E;(1) + Ex(1)
+ EDA sk Nk -

We shall assume that JA K and JV K are in fact
generalized operators; this is certainly true in all of the
concrete rigged Hilbert spaces considered so far
suchasd < d', D < D', X < X, and direct sums of
these.

One clearly has J 2 JAK, K> JA K, J L J VK,
K< JVK and furthermore all these pairs are
projective. This latter contention is in fact quite clear
but it can be proven in detail using the methods of the
lemma above.

Finally if J > K and {J, K} is projective, then
JVK=J,JAK=K.

A set 8 of positive generalized operators is said to be
projective if every unordered pair {J, K},J€ §, K€ §,
i a projective pair.

We say that a set 8 of positive generalized operators
is projectively closed if whenever J, K € § and {J, K}
is a projective pair,then J v K'€ 8. By assumption the
set of all positive generalized operators is projectively
closed. The intersection of any number of projectively
closed sets is projectively closed. The intersection of
all projectively closed sets containing a given set $ will
be called the projective closure of 8 and denoted by SP",

The set 8 will be called spectral if its projective
closure is projective. Notice that if § is spectral,then
its projective closure is directed for given J, K € S¥
we have that {J, K} is projective and J vV K € 8Pf but
JVK>J,JVvK>K By Lemma 6 we see that S
is a projective net and so defines a renormalized
Hilbert space ¥'g = _lim @4, where O = (Hy,
Hy,id) and K € 8", The set 8 is now renorialized to
a set of commuting projections in'V',. We also have the
dressing transformation A:®_ —Y .

Let now T be a set of symmetric generalized opera-
tors. We assume each T" € G has a (positive) generalized
spectral measure Jp: 4 ~—> J;(A4). We then say that
the set G is spectrally commutative if the measures J
can be picked such that the set § = {J;(4) |T€ T,
A € U}} is spectral. A spectrally commutative set can
be simultaneously renormalized and exhibited by
means of a set of bona fide mutually commutative
spectral measures Ep: A ~— Ep(A).

We give two examples:

Example 26: On D(R) < D'(R) we consider the
two generalized operators

(ZN)x) = f(0)8(x),
(S)(%) = f(1)d(x — 1).
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This is the same as Example 23 with y = 1. We take
the following two generalized spectral measures

Jo(A)f = 140)f + Brx4(2)5(x)f(0),
TS = 240 + Baxa(A)d(x — Df (M),
where 4;, 4, f;, f2 € R, and §; > 0.

Either by direct apprehension or by a simple
computation one sees that any pair {/;(A4), Jg(B)} is
projective, that
Ir(A) v Is(B)f = 14uB(0)f + Bix4(2)0(x) f(0)

+ Boxp(A)o(x — 1)f(1)
and that the set of all generalized operators formed.in
this way is projective and projectively closed. Thus
{T, S} is spectrally commutative. We have ¥ =
(LY(R) @ C2, L¥(R) ® C?, id) with

If®a®bl*=I1fIF+ Bilal* + By 1613,
Af=f@f0)&f(1), Taf©a®b=0®4had0,
Spf@a®b=000@ Ab

and this accords precisely with the formal picture.

Example 27: We again consider D(R) < D'(R)
and the following two generalized operators:

(INx) = f(0)d(x),
(Bf)x) = (i) (x).
This corresponds to Example 22 but we have now taken

the generator of the group U.
For the generalized spectral measures we take

Tr(A)f = 240 f + Bra(Ae)f (0)5(x),
B>0, B, 4R,
Jpld)f = F*M, Ff,
where § is the Fourier transform and M, is the
multiplication by the characteristic function y 4.

If we note that y,(0)f = x,(0)F ‘IMIR&' f, then
one can see that any pair {J;(A4), Jp(B)} is projective,
that

Jp(A) v JP(B)f = ‘Tﬂleax(xA(O).lB)‘?—f

+ 81400 [ (0)5(x),

and that the set of these operators is projective and
projectively closed.
We have V" = (L2(R) ® C, L%(R) & C, id) with

If@cl®=11Iz + Blel,

Af=f@f(0), Tpf®c=0® Ay, and Prf@®c =
(Pf) ® 0 = (1/))f’ @ 0. Thus Py, generates the unitary
group U(t)f® ¢ = f(x + t) @ c. This is one of the
groups found in Example 22.
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In case the set G is not spectrally commutative,then
the set § = {J,(4) | 4 € U3T € B} is not spectral and
therefore T cannot a priori be simultaneously re-
normalized by means of a commuting set of spectral
measures. One would like to have, however, an
analog of the reduction theory of rings of operators
and in our case this now involves the following
problems:

(1) The set 8§ above is a candidate for renormaliza-
tion to a set of not necessarily mutually commutative
orthogonal projections. Is there any way of specifying
to what extent a set of positive generalized operators
is a candidate for renormalization to a set of orthog-
onal projections ?

(2) What are the relationships between the re-
normalization and reduction programs?

(3) In the case of partial renormalization one can
relax the condition that all the generalized operators
be positive; in this case one renormalizes a certain set
of positive generalized operators and wishes to retain
a certain other set as a set of generalized operators
on an appropriate rigging of the renormalized Hilbert
space. How is the renormalization procedure modified
in this case and how is the appropriate rigging to be
effected? This again brings up the problems of
adequacy.

These questions are interrelated and so the following
discussion will not treat them in complete isolation.

Let us first approach the problem of adequacy. If
we are given a set G of generalized operators and a
spectral set 8§ of positive generalized operators,then
inductive limit theory provides us with a reinterpreta-
tion of each element S of 8 as an orthogonal projection
Sy in'¥, but it does not supply us with a reinterpreta-
tion of an element 7€ G. One of the problems
connected with this is that the elements of ®_g = Hy
of the rigged Hilbert space (Hg, Hg,id) and the
elements of W_ of the inductive limit may not be
sufficiently ‘“smooth” to reinterpret T. This was the
situation encountered with Example 23. We want to
pass to a different rigging of ¥, and we here attempt
to do this by constructing a different system of rigged
Hilbert spaces Qg with @_g = Hg but consisting of
vectors “smoother” than an arbitrary vector of Hg.

Let O = ®_ and, having defined @' < d_,we
define ®F*Y < @_ by

OFH = (e DY | QsrArf e ALY forall T > S}

and let O_g = N2, AgDY.

We now show that,for T 2>S,rpg®_g < O_p. For
n>1,let fi € P be suchthat Agfiy = (g€ O_g;
we have

resls = rosBsf g' ) = QsrArf g‘ ),
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but by definition

(n) _ (n-1) (51 (1)
QsrArfg’ = Apgyr ™, gg " edp™,

so rpgle = Apgh* and so
-2
rosls € noATd)(Tn) =0_r.
=

Now O_g need not be dense in Hgand the only time
in which this procedure will work is when ©_g is
dense in H for a cofinal subset Sg of 8. Let us assume
this is the case and we shall discuss this possibility
later.

Let Yg < Hg be the space Vr. g psr®_p, that is,
the linear span of the spaces pgr®_p < Hg. We have
psplp < Yg. For neYy, {€@_g set (n, )=
(n, )g, the last inner product taken in Hg. Thus,
©_g can be considered as a space Eg of antilinear
functionals on Yg. Let T, g be the space of Cauchy
sequences of Hg with respect to the pairing of Yg
with ®_g and let jg be the canonical inclusion
O_g = T,5. We endow Y, g with the weak*t topology
with respect to its pairing with ©®_g. We now show
that rpg:@_g— ©O_5 is continuous with respect to
the topologies obtained from the Y,g, Y,.n by
restriction. Indeed for Apge Y, and AgfeO_gwe
have

(Apg, rpghsf) = (Apg, QsrArf)r
= (psrArg, psrdrf)s = (Bsg, Bsf)s»

but Agg € Yg 50 rpg is in fact continuous in the stated
topologies. We can therefore extend r,g to a map,
again called rpg, from T, g to T . By continuity we
still have the transitivity relations rpgrgp = rpp.

The triple (®_g, Y. g, j) is not necessarily a rigged
Hilbert space, the only difficulty being that there may
be elements in Y which vanish on all elements of
®_g. One can introduce the space ®, g which is the
space of equivalence classes of T g with respect to the
equivalence relation that # is equivalent to {, 7,
{ e Y, gifand onlyif # — [ vanishes on all elements of
®_g. Since no subspace of a Hilbert space has an
element orthogonal to this given subspace,we see that
05 = (O_g, 0.4, js) is arigged Hilbert space and in
case S € 8y, Og is a rigging of Hg. The difficulty with
introducing @, ¢ is that the map r;g does not map
equivalence classes into equivalence classes. Thus,
{®g} is not an inductive system of rigged Hilbert
spaces. This is,however,only an apparent impasse,for
a detailed examination of the inductive limit con-
struction shows that the triple (®_g, T, 5, jg) can be
used with appropriate modifications. We now give
these modifications.
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As before we call the map rpg:0_g—> O_pbyk_pg
and the extension rpg: L ¢ — Y, 5 by ko pg.

We note that (IF4) is satisfied,for if fe ©_g,
¢ Y, 5, then there is a sequence ¢, € Eg which
converges weakly to ¢. We have,for T > S, (f, ¢,)g =
(rrsf, rps$n)r ,which by continuity of rpg implies
that (f, ¢)s = k_rsf, krrsir.

Property (IF5) is now modified to the following:
The map (k_pg)": Y.p — O_g defined by

fs k_ps) $s = krsfs $)r
maps Y, 7 into ®%g. We prove this: Let ¢, € Egbea
sequence converging weakly to ¢; then

<k—TSf, ¢>T = hm <k—TSf’ ¢n>T = hm (rTSf9 ¢n)T
= lim (f, pgrda)s;

but pgré, € Ty so that f~— (f, pgré,)s is a func-
tional in ®, g and since the above limit exists,we have
that f~— (k_pgf, ¢) is a functional in O%g.

We now want to define a rigged Hilbert space A
which is in some generalized sense an inductive limit
of the system {(O_g, Y, ¢, js)} for S€ 8.

For A_ we take as before _lim ®_g, an inductive
limit of complex vector spaces. As before,the canonical
maps k_g:®@_g— A_ are inclusions.

Again as before,we take for A that subspace of AL
each element of which when restricted to k_g®_gis an
element of ®%5. The canonical restrictions rg: A, —
O24 are therefore again defined.

The definition of k g: Y ¢ — A, proceeds as before
but we now do not have that kg is an inclusion. What
we do have is that k_g does not annihilate any nonzero
element of Eg,for if ¢ € Eg and k, g¢ = 0,we have,for
all fe O_g(k_sf, kis¢) = (f, $)g = O and so ¢ = 0.

The linear maps /g and the linear map j are defined
as before. These maps are in fact inclusions by the
result of the previous paragraph.

As before,the quadratic form f~— (f, jf) on A_is
positive definite and this also follows by the above
mentioned property of k.

The proof that A, = A, is the same as before and
concludes the construction of A as a rigged Hilbert
spacem

The next question is: In what way can A carry a
generalized operator T if T¢ 87 If [ € ®_gand fisa
representative of {in ®@_, then Tf need not necessarily
be in any sense an element of 1, g;however,one can
ask whether this situation holds in the limit in the
following sense: Let /, I’ € A_;then each has a repre-
sentative {, {' in O®_g, ©_g. respectively; for R > S,
R > S’ let rpgl and rpgl’ have representatives f and
f'in ®_, respectively. One can now ask whether the
limy, (f’, Tf) exists and whether it is independent of
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all the choices involved. If this be the case,then we
call this limit (!, T,I) and T then defines a map
A_— Al.Incase T\A_ < A_then T, is a general-
ized operator on A and we say that T is expressible
in A. We note that each S € Sg is expressible and
Sp=Eg|A_.

We give some examples.

Example 28: Let 8 be given by the generalized
spectral measure for the multiplication by the é
distribution 8 = {J(4)} 4., Where

JA S = 140)f + Br4(4)f(0)0(x), £> 0.

Eventually both x,(0) and x,(4,) are 1 and so we
consider this case. We have H, = L3R, dx) @ C,

If@cli=If1*+ Ble

and A,f = f®f(0). If B> A, then one easily sees
that O,z =1 and so ®' = ®_ and thus O_, =
{f®f(0)|feD} and consequently Y, = O_,. We
now have that ¥, , = @, , = D’ ® C modulo, the
equivalence relation ~ by which ¢ Da~7®b if
é — v = B(b — a)d; j4 is given by defining j, f @ f(0)
to be the equivalence class of f@® f(0) in Y, 4. The
rigged Hilbert space A is therefore identical with any
one of the triplets (0_4, ©, 4, j4). The Hilbert space
A, is indeed Wy = L3R, dx) @ C, where h @ ¢ is
taken as an element of A, by considering its equiva-
lence class in D' @ C; this inclusion is well defined,
for there is only one representative ¢ ® a of this
class in which ¢ € L2,

Now let I=f@f(0), I'’=g @ g(0),both being
elements of A_and let 7 be multiplication by d(x — y),
y # 0. Then for A such that x,(0) = 1 = y,4(4), fis
the unique representative of / and g is the unique
representative of I” and (g, Tf) = g(y)f (y),which is
independent of 4 and in fact g ~—> g(y)f(y) defines
an element of A, given by the equivalence class of
S(d(x — ) ® 0. Thus T is in fact expressible in A
with T, f® f(0) being the equivalence class of
fG)3(x = ) @0. -

Suppose now that y = 0;then (g, Tf) = g(0)f(0)
and,as before, T, exists with T, f ® f(0) being the
equivalence class of f(0)6(x) @ 0. Note now,however,
that this equivalence class also contains the repre-
sentative 0 @ (1/8)f(0)so T f @ f(0)e Agand T isa
densely defined bona fide operator; this operator is
bounded on its domain and its continuous extension
to Ay is 1/8 times the projection onto the direct
summand C.
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Now J is in fact the generalized spectral measure of
T and so it is of interest to compare 7, with Tp.
We note that Ty = Ty if and only if 1/8 = 4,. Is
there any way to understand this relation? We recall
that according to the formal picture T is 6(0) times the
projection onto the subspace generated by the delta
function. The renormalization procedure ‘“‘renormal-
izes” 6(0) to A, and makes the & function into a new
discrete state of norm 1/,/8. Now the formal norm of
a(x) is

18l = ( f 8(x)* dx)%= 601t

and so the §(0) here is “‘renormalized”” to 1/8. The
condition 1/ = A, therefore equates these two
“renormalizations’ of 8(0). The condition 7T, = T
relates the “renormalizations” of divergent expressions
occurring in formal inner products with the ones
occurring in the formal eigenvalue problem. This can
be seen to be in a sense true in general, for the con-
struction of T, is related to the inner products in the
Hilbert spaces H, which are related to formal inner
product calculations while Ty is by construction more
sensitive to the formal eigenvalue problem. Note that
for 2, <0 we would be forced to introduce an
indefinite metric 8 < 0 if we were to insist on the
equality T, = T5. The precise relationship of T, to
Ty is of course a very intriguing question which we
further explore in another example below.

As a final observation we note that if we were to
renormalize T, for y =1, then we would get the
results of Example 25 where now (7,)5 corresponds
to Sp of that example and the Ty of that example
corresponds to expressing the bona fide projection
f@f(0)~—> 0@ A4f(0) on the new rigged Hilbert
space A’ constructed from A in the same way that A
was constructed from @. One can thus break the
renormalization procedure into several stages of
partial renormalization.

Example 29: Let @ be the rigged Hilbert space
D(R) = D'(R) and let § be the set of projections
which are multiplications by y,(x) where A4 is a
closed interval. H , is of course L3(4,dx) and A, f =
x4f. We have @ = {fe D(R) | Quprpf € 15D for
all B> A}, but Qzxsf = 14f and so ®F = D(4);
therefore, ®f = D(4) and so O_, = D(4). Clearly,
T, is the set of all complex-valued functions on A4 that
can be extended to a C* function on a neighborhood
of A, Y, , is then {reD'(R)|supp (r) = 4} and
0, is D'(R) N D’(4). The rigged Hilbert space A is
again D(R) < D'(R) and so A = ®. If now [, /'€
A_, then these have representatives f and f’ in some
D(A) = P_ and these representatives are unique; thus,
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if Tis any generalized operator, then ( f,If) is
eventually independent of A4 and in fact defines a
generalized operator in A which is identical with 7.

The above two examples illustrate that the rigged
Hilbert space A possesses very natural and elegant
properties; however,a note of caution must be added
here. The question of rigging is of great importance
here: One must be able to pass to a rigging in which
there exists a cofinal set Sy and which is otherwise
adequate for the expressibility of other generalized
operators. Candidacy problems therefore begin to play
an even more important role here than for the theory
of a single generalized operator.

Example 30: We here want to examine the conse-
quences of imposing, up to domain considerations,
the equality 7, = Tx on Example 18 of Sec. I1I. We
are working on D(R2) < D'(R2) with T being
multiplication by 7(x)d(y) where ¢ € C*. In Sec. III
we found that,for 4 # 0,

R.f = %f + 1(x) f (%, 2)f(z, 0) dz8(y),

where 1(x)r;(x, y) = t(y)r;(y, x) and weak diagon-
alizability requires r; to have support on the set
{x = y}. Assume for the sake of this example that
J(R) exists so that ¥ = (Hy, Hy,id); if r; is
then sufficiently well behaved, H, will be given by
Hy = [*(R? @ H,_, where H_is the completion of
C* [supp (1)] with respect to the inner product

(f: o) = f FoK(x, »)e(y) dx dy,

where « is a positive kernel with support in {x = y} N
[supp (¢) x supp (¢)] and where by definition fe
C? [supp (#)] if it has a C*™ extension to a neighbor-
hood of supp (#). The dressing transformation will
then be given by Af = f® f(x, 0). The construction
of A is now straightforward and we clearly have
A= {f@f(x,0)eD(RY & C* (supp (1))} = AD_
and A, is given by the sequential weak* completion
of this with respect to the inner product (-, -),. Now
Ty is given by T, = 0@ T,, where T, is obtained
from ¢(x)r;(x, y) by the renormalization procedure of
S_ec. III; on the other hand, T, is given by

T f®f(x, 0) =t{x)d(n)f@ 0,
which will equal Ty if and only if
f #0015, 0) dx = (5%, 0 Tef 5, 00,
for all g € D(R?). This equality greatly limits our
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choices for r; and brings us closer to the “desirable”
answers of Sec. [II. Among the allowed choices is now
of course r;(x, ) = (/10 igupp (0 (IBSGx — Y14 —
ft(x)], where B> 0 but other choices are also
possible such as allowing § to depend on x. Notice
that the 8 in the numerator of the above expression
corresponds to a ‘‘renormalization” of a formal
divergent inner product while the § which stands in
front of #(x) corresponds to a “renormalization” of a
formal eigenvalue. The condition T, = Tg thus again
relates the two formal considerations but whether
such identifications are in fact desirable is not here
clear.

Example 31: On D(R) = D'(R) let 8 consist of the
single generalized operator .S which is multiplication
by the o6 function. We have immediately Hg = C,
Agf=f(0), O g=C, Yg=C and so A =(C,
C,id). If,I"e A_, thenany f, f’ € ®_ with f(0) = /,
Sf'(0) = I’ are the respective representatives and if T
is any generalized operator,(f’, Tf) is independent of
the choice of representatives if and only if T is pro-
portional to S. This is an extreme example in which no
operator other than one in the linear span of § is
expressible in A; the source of the difficulty is more-
over not in the choice of rigging. We have not there-
fore completely solved the problem of adequacy.

Concerning the construction of A some comments
are now in order. In the first place the construction of
®_g and subsequently of A makes no use of @,
except indirectly through the use of the set 8; thus the
construction does not entirely reflect the properties
of the original rigged Hilbert space ®. We do not
believe this to be a major drawback since @, is usually
no larger than the W+ sequential completion of ®_
with respect to the sesquilinear form f, g ~ (f, jg)
and so @, is closely related to ®_. The second com-
ment is that the construction of A involves only the set
8 and makes no reference to G so that to have 7€ G
expressible in A is still partly an accident. As Example
31 points out,this problem of adequacy still remains
even after the problem of constructing a sufficiently
“smooth” rigging of ¥, has been solved.

We now turn to some other considerations. Let 8
be a set of positive generalized operators which is to be
a candidate for renormalization to a set of orthogonal
projections. What we mean for § to be renormalizable
is that there is a spectral set T such that for all J€ §
there is a P €JP" such that P > J and the pair is
projective. We first note that if now P is any element of
J¥7 such that P > J, then this pair is projective, for
since & is spectral there is now an element S € FP*
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such that § > P, § > J and both pairs are projective.
Since J < P,we have Jg < Pg,and since both are
projections,we have JgPg = Jg; therefore

lpssrspBpflly = lpssPsBsflly = ITsPsAsf s
= “JsAsf”s = ”AJf”J
and we conclude that p;grgp = pyp and finally

Jp=plppsp=r g’PPJSPJSrSP = ppsJsPhsr
which implies that

Jb = ppslspbsprsdspis = prssPs)spbs
= ppstspps = Jp

and P > J is projective. We can now renormalize
every element J € § to an orthogonal projection Jg in
Wog, where ¥y is the renormalized Hilbert space of
the spectral set §'; namely, we set Jg¥o = kpJpHp
for any P > J, P e 7", We thus obtain a set S of
orthogonal projections on 'y and we can ask in what
way is the set Sy unique. A partial answer is provided
by the following:

Theorem 2: Let the set 8 be renormalized by two
spectral sets ¢ and " to the respective sets of orthog-
onal projections S8z on Wz and 8z on Wyg. . Let S
and S’ be the closed linear spans of 8 z'¥; and 8§y,
respectively and furthermore if & = § is any finite
subset of 8,let S; and S; be the closed linear spans
of Fz¥, and F ¥, respectively.

There exists a densely defined operator W:S — S’
satisfying the following properties:

(1) The domain of Wis the linear span of U\Tcs Sg;

(2) W is bounded on each Sy ;

(3) Wis an isometry on each JS;

(4) Wintertwines J and J.; that is,WJp > Jp W.

Proof: We first define W on a dense subspace D of
each ;. Let F = {J},oy,...y and pick P €J* and
P’ e TP such that P > J,, P’ > J,. Let

N
h= 21 (JdrkpApfi
then we define Wh by

N
Wh = '_zl(Ji)R’kP'AP'fi .

To show that W is well defined,let 0 = Y (J,)gkpApf;;
then for all g € ®_ we have
0 = (kpApg, z (JIrkpApf)
= (Apg s z ) i)PAPfi) = <g s z J 1_f1>

and therefore 3 J;f; = 0; a similar argument now
shows that

Z (J)rkplDp fi=0
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and so W is well-defined. Now for J € S we have

I gkpApfll = |JpBpflip = (£, Jf)
= |J P’AP’f lp = 1J R'kP’AP'f i

and so W can be extended to an isometry on each J5S.
From this it follows that W can be extended to a
bounded operator on each S since the bound of W as
defined on Dy now depends only on the angular
relationships among the closed spaces {/5.S} ;.4 and
{Jr-S'} sz - The other contentions of the theorem are
now obviousm

The above theorem is quite simple but it provides
important insights. One should note for example that
W need not be an isometry nor need it be bounded.
To construct examples of such,we first note the
following:

Lemma 7: In (¥, 3, id) if 8 is any set of orthogonal
projections such that whenever J, K€ 8, J # K, we
have J N K = 0, then § is spectral.

Proof: Let F = {F;};oy,...v and F' = {F{},o .. &
be two finite subsets of § and let F=Y F,, F' =
> F;. we show that {F, F'} is a projective pair.
Consider the eigenvalue equation

Ff= MF + F)f,

where fe (U F, U U F)X. We have
N N’
3 U= DEf+ 3 (- HFif=0.

Let {G}iey..ar b6 F N F and let > denote a summa-
tion which leaves out the G,. Then we have

A N M
2= HFf+ 2 (=DFif + _21(1 —20)G,f=0
and so by hypothesis we must have

(1_2)F1f=0! Fi¢Gja
(1—-20G:f=0,

and so if f 7 0,we must have either A =1, 1 =0,
A =1}, and {F, F'} is a projective pair. This shows
that 8% is given by O g Filgcs, Where F is any
finite subset of § and thus 8 is spectralm

Example 32: Consider (¥, J, id) and let {A,},c4
be any linearly independent set of vectors of norm
one. Let 8§ = {|4,) (h,|},c4; then 8 is spectral by the
above lemma. Let & be the spectral set consisting of
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the singleton {1} and let 3’ = 8. Let {e},e4 be an
orthonormal set in an abstract Hilbert space of
dimension cardinality of 4; then W is, up to domain
considerations, equivalent to the operator f~—
> e h,,[f) for fe€S, which clearly need not be an
isometry nor be bounded.

It would be instructive to know to what extent one
could prove the converse of the Theorem 2, namely if
8 is renormalized by a spectral set ' to a set of orthog-
onal projections and if V' is an operator on S taking
values in a Hilbert space J€ and satisfying conclusions
(1)-(3) of the Theorem 2, does there exist a spectral
set 9’ renormalizing 8 to a set of orthogonal pro-
jections such that V is equivalent to the operator W
whose existence is asserted by the theorem? At
present we can only give a partial answer; namely, if
V is bounded and invertible on ¥y and is an isometry
on each Jz'¥y,then the answer is yes, for we need only
then take 3’ to be the set of all generalized operators
given by the sesquilinear forms f, g ~— (Vkplpg,
VkpApf) for P e . This example covers sufficiently
many cases to show that the set § is far from unique.

Let now 8 be spectral and so we can take § = §;
suppose now that 7 also renormalizes § to a set of
commuting projections;then it is readily seen by its
very construction that W is an isometry. Thus, a spec-
tral set can be renormalized to a commuting set of
projections in essentially a unique manner. Conversely,
if 8 is renormalized by T to a set of commuting pro-
jections, then 8 is spectral. To see this,one needs only
show the following easily proved fact: If P > J,
P > K are projective pairs and Jp and Kp commute,
then {J, K} is a projective pair and J v K is given by
(g, JV Kf) = (Apg,Jp U KpApf)p. A spectral set
therefore has an essentially unique distinguished
method of renormalization, namely, to a set of com-
muting projections. Other methods of renormaliza-
tion are of course still possible.

If § is not spectral,then there is a priori no distin-
guished method of renormalization and the number of
essentially different methods is in fact very large. The
problems of renormalization and reduction therefore
are not separate. The problem of ascertaining, when a
set § can be renorimalized to a set of projections is
therefore quite delicate and requires deeper investiga-
tions.

Let now 8 be an arbitrary set of generalized
operators and let T be spectral. Assume that 8 is
expressible in Ag;. We must now again realize that
there is no a priori distinguished J and in general there
is no way of separating the renormalization and
reduction theories.
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The above considerations have a bearing on the
physical renormalization program, for if T is not a
spectrally commutative set, then even if somehow we
picked the generalized spectral measures {Jp}p.g
part of the renormalization program now involves the
essentially arbitrary choice of the “angles’” among the
renormalized spectral measures; even in the case of a
spectrally commutative set one may be forced by
physical consideration to renormalize the spectral
measures to a noncommutative set.

A typical physical situation is the following: We are
given a set § of generalized operators which are the
formal generators of the one-parameter subgroups of
some physical group such as the Poincaré group; §
must of course be renormalized to a set of bona fide
self-adjoint operators. We are also given another set
8§ of generalized operators that we want to retain as a
set of generalized operators. Typically § is given in
terms of creation and annihilation operators and 8 is a
set of free fields at a fixed time. The renormalization
program now is the following: Sy, is obtained by two
steps; first, we must choose appropriate generalized
spectral measures for each element of § and,second, we
must find a spectral set & which renormalized the
generalized spectral measures to a set of bona fide
spectral measures the “angles” among which are such
as to obtain a representation G5 of the Lie algebra of
the physical group. We conjecture that if the second
step is possible at all,then as for the spectrally commu-
tative case it can be carried out in an essentially unique
way. Lastly, we must endeavor to have 8 expressible
in Ay to obtain a set of generalized operators 8, .

The above of course is merely an outline but such
an outline was in fact a prime goal of this section. It
remains for future investigations to show to what
extent this program can be carried out in practice.

V. CONCLUDING REMARKS

Historically functional analytic methods were
introduced in order to deal with qualitative features of
differential and integral equations; however, in the
process of doing so certain concrete features of the
original problems become lost. Thus, the fact that
the original equations could be solved for concrete
functions becomes lost in the study of abstract
operators on abstract topological linear spaces.
However, one has to reintroduce a certain amount of
concreteness in order to deal with certain problems;
thus, in studying the decomposition of operators with
respect to eigenvectors one often needs more than the
spectral measure (part of the purely abstract theory);
it then becomes necessary to study features of the
eigenvectors themselves. To do so,one needs spaces
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to carry them and this leads to the introduction of
auxiliary vector spaces such as ®_ and @, of rigged
Hilbert spaces. We have been trying in the previous
sections to see to what extent this formalism can
handle problems outside of differential equations but
which are closely related to them. We envisage a
unified theory of differential equations and the so-to-
speak generalized differential equations (generalized
operators) seeking that such a theory would not only
solve hitherto intractable problems but shed more
light on differential equations per se by placing them
in a wider context. The methods we have employed in
developing an appropriate formalism have a large
dose of extramathematical reasoning coming mostly
from physics; thus we have in this work only a certain
outline of a purely mathematical theory.

We believe that the reintroduction of a certain
amount of concreteness into the abstract theory of
operators is crucial. The abstract methods introduced
to study the qualitative features of concrete differential
and integral operators have often abstracted too much
to permit simple analyses. A differential equation
may have solutions which do not lie in the function
space set up to study it,and information which these
solutions provide either gets lost or else finds its way
into the admissible solutions in such a complex way
as to be almost inextricable. Thus, in analytic Hilbert
space perturbation theory T(1) = T, + AV one can
often find situations in which the perturbation series
for the normalized eigenvectors is not analytic at
A = 0 even though the concrete differential equation
has solutions as concrete functions which are analytic
at A = 0. In such cases, it is often expedient to study
these solutions even though in the end one wants to
obtain information only about the Hilbert space
behavior of 7(1). One would like to have sufficient
concreteness to be able to deal with such situations
but at the same time have a sufficiently abstract
formalism to study the qualitative features of large
classes of problems. In this work we have introduced
the notion of a rigged Hilbert space at the basis of
such a formalism. We again point out that our notion
is weaker than that normally used and thisis necessarily
so,for the usual notion so far has rarely provided results
significantly different from those of bona fide spectral
theory. One of the surprising insights of our investiga-
tions is the importance of what we call candidacy
problems. We have not pursued these but there is a
definite mathematical program connected with them,
namely the following:

(1) Define precisely what is meant by a change of
rigging and a change of candidate.
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(2) Define precisely what is meant by the various
natural riggings (such as the complete and the
diagonal rigging).

(3) Prove regularity theorems which determine
when various natural riggings exist.

(4) Discover procedures for constructing the natural
riggings when these do exist.

(5) Find a natural way of expressing statements
that are true “up to a change of rigging.”

A natural question that often arises is what addi-
tional topological assumptions should one impose on
®_and @, . In our view one natural a priori assump-
tion is to require @, to be the W+ sequential comple-
tion of j®_. This is a generalization of the sequential
completeness of a Hilbert space. In this way,starting
with any pre-Hilbert space V" with the inner product
(+, -),one can construct a canonical rigged Hilbert space
® by taking ®_ to be ¥ and @, to be the sequential
weak completion of V with respect to the inner
product. Any consideration of further topological
properties of ®_ and ®, we believe has to be related
to the structures of any given generalized operators
and pursued within the mathematical program in-
troduced above.

To disclose the structure of generalized operators
we have used analogy with bona fide operators;
namely, we assumed there is an analytic manifold of
“solutions,” given by R;, at the singular points of
which lie the physically relevant structures. We have
realized in the end that this approach is an attempt
at two things at once, namely,a mathematical theory
and a physical interpretation. For the program to be
entirely successful,we must separate these two aspects
and begin to decontaminate the mathematics from the
physics. The mathematical aspects are the more
imperative, a view which we shall further substantiate
below. Because of this it is important to recognize the
intrinsic properties which are independent of the
physical renormalization program.

At the other end of the physical renormalization
program one arrives at a set of generalized operator-
valued measures and one is once again in the domain
of pure mathematics. Section IVC indicates that there
is a definite multiplicity theory of mathematical
renormalization which can be pursued as an independ-
ent mathematical discipline. This theory still needs
further material to be gained from physical considera-
tions, for we have not developed in full detail the
renormalization program for generalized operators
containing “unusual” singularities in the resolvents.
The mathematical and physical nature of these has
yet to be clarified.
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Underlying the whole program of investigating
generalized operators is a definite conception of the
physical processes that generalized operators repre-
sent. Our views on this matter, which are somewhat
unconventional, are the following:

The introduction of well-defined mathematical
objects corresponding to physical phenomena is in
general not very difficult in two forms, what may be
called the differential and the integral form. Most
theoretical difficulties come from trying to relate the
two forms to each other by a definite theory. Thus from
an “infinitesimal” mechanical model of continuous
media one arrives at the differential equations govern-
ing propagation and diffusion processes. There is an
extensive body of functional analytic knowledge
allowing us to study the structure of such equations
and to relate them to the solutions, the integral form
of the phenomena. Of course, a theory attempting to
relate differential to integral forms may be frustrated
by various “paradoxes” whose appearance may signal
the existence of qualitatively new phenomena; thus
the Klein-Gordon equation contains the Klein
paradox which obstructs the quantum mechanical
interpretation of the solutions and is finally resolved
by the presence of pair creation.

With the experimental development of elementary
particle physics it has become clear that in addition to
propagation and diffusion phenomena one has to
consider the processes of emission and absorption.
The formalism of creation and annihilation operators
has enabled one to express the differential form of a
mathematical theory, namely the introduction of
generalized operators. The mathematical structure of
these has, however, not been developed; what con-
fronts one immediately is the difficulty that the formal
Hamiltonians,say, map vectors of Hilbert space out of
Hilbert space. Now there are two possible attitudes
toward this fact: (1) the formal Hamiltonian is suspect
and one must alter it drastically to conform to quan-
tum mechanics; (2) the view that the inner product
in the rigged Hilbert space in which the Hamiltonian
is defined carries quantum mechanical probabilistic
information is suspect. Most theorists to date have
taken the first viewpoint; we propose the second.

.Taking this point of view, the introduction of the

Schrodinger equation
i2 4 = Ty(o)
ot

is seen to involve false pretenses. In the first place, the
equation is practically meaningless in that there are in
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general no solutions other than 9 = 0 and in the
second place, since the inner product in ®, does not
carry quantum mechanical probabilistic information,
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set of real quantum field amplitudes ¢(x), x € R*;
[$(x), #(»)] =0, x5 y. One then introduces a
complete set of simultaneous eigenvectors ¢(x)¥; =

there is no point in introducing the equation in the f(x)¥,, where the vector ¥, is determined by the

first place. Conventional perturbation and renormal-
ization programs also suffer from these false pretenses
since they assume one is starting from some known
“bare” quantum mechanical system. In contrast to
the case of propagation phenomena where physical
reasoning leads directly to equations to be solved,
physical reasoning in the case of emission and absorp-
tion does not lead directly to a set of equations to be
solved. However,the reasoning leading to the formal
Hamiltonian is sufficiently simple and compelling that
one should take it in good faith. The formal Schré-
dinger equation also should contain some truth and
one must now ask what procedure for generalized
operators corresponds mathematically as closely as
possible to finding the solutions of a differential
equation. The answer to this question is the goal of the
intrinsic structure theory. One can now see just what
role the methods of the previous sections, especially
Sec. III, play; they straddle the mathematical and
physical frameworks in that having some idea of the
final physical situation we use the information to
obtain insight into the mathematical structure theory.
Eventually, however, the resolvent methods as we
have formulated them, especially in the multivalued
approach, would have to be given up for more
intrinsic methods;for, just as not every differential
equation has a well-defined physical interpretation,
not every generalized operator should answer to
physical principles and we are endeavoring to have a
theory of generalized operators in general. It is
imperative, however, that the provisional methods
which we do employ not do any violence to the
mathematical objects involved, for these are not
suspect; we are willing,however,to do some vio-
lence if necessary to certain physically related
notions obtained from bona fide operator theory.
We envisage a general theory of absorption and emis-
sion, such as a detailed theory of electrodynamics,
which stands prior to quantum mechanics. Such
a theory may in fact contain ‘“paradoxes” forcing
us to change some physical views and it is also for
this reason that a purely mathematical theory is
imperative.

Finally the theory of generalized operators may be
considered as a form of calculus in infinitely many
dimensions. There exist other infinite-dimensional
calculi; namely the “functional methods.” These are
all based on the following formal considerations. One
formally simultaneously diagonalizes a commuting

function x ~— f(x). If ® is any other vector, then
one can pass to the “representation” (®,¥,) = ®(f)
which is a functional on the space of functions
x ~— f(x). The field ¢(x) now acts as a multiplication
operator multiplying ®(f) by the evaluation func-
tional ev,: f~— f(x) = ev,(f); thus ($(x)®)(f) =
ev (/)D(f) = f(x)®(f). One then introduces the
canonical conjugate amplitude =(x); [é(x), 7(y)] =
id(x — y) which in the functional “representation” is
taken to be the functional derivative 7(x)=(1/i)d/6f (x).
The above approach is often used by physicists because
a large class of Hamiltonians in quantum-field theory
is formally given by the forms

T = f (%) dx + V().

The “‘calculus” presented above, however, contains
serious mathematical difficulties and there have been
numerous attempts to put some form of it on a sound
basis but few of these have met with any satisfying
success.

One particular difficulty that one notices imme-
diately is that for many of the functionals one
wants to consider the higher-functional derivatives
such as 02/df (x)? are not well defined. For example

[6%/8f (x)"] f FOY dy = 650)f(x)

and one meets the meaningless expression §(0). This
is reminiscent of the difficulty in formal calculations
of generalized operators; however, this difficulty with
the functional approach has in practice proved more
intractable. Can generalized operator theory help us
understand this intractability ? The following remarks
may be of relevance: Let ¢(x) be a free neutral scalar
boson field amplitude defined in Fock space; then
formally ¢(x) has eigenvectors $(x)¥, = r(x)¥,,
where 7(x) is a formal symbol that one manipulates
as though it were a function. These eigenvectors can
be given explicitly in a concise manner by means of a
generating functional;we define

G.(f) = exp ( f FO)r0) dx — 3 f R dx);

then the n-particle component of ¥, is given by

_ 1 o 0]
(O of(x)  Bf(x)

(‘.Fr)n(xla T, xn) Gr(f)lf=0 N
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So, in particular, (¥,),(x) = 7(x) and we have chosen
the normalization such that (¥,), = 1. If we now rig
the 1-particle subspace by ®_ < ®_, then 7 should be
in @, . An explicit calculation of (¥,),(x;, ", x,)
shows that this is a sum of tensor products of factors
either of the form (x,) or d(x;, x;), i # j, where
0(x, y) is a formal reproducing kernel

f 5, 1S () dy = f().

If we rig the multiparticle subspaces appropriately,
these formal expressions will in fact be concrete
generalized functions and ¥, will be in fact a general-
ized eigenvector. The conditions which these require-
ments place on ®, are,however, quite liberal, so
liberal in fact that there is no generalized function
space which contains all possible 7. We have shown
therefore that ¢(x) has no complete rigging; no rigging
of Fock space exhibits all the possible generalized
eigenvectors of the bose field. The duals of function
spaces therefore do not provide us with a universal
infinite-dimensional independent variable but it is the
belief in the existence of such a variable, which is
naively taken to be a function, that underlies many of
the formal methods of the functional approach as used
by physicists. Whether in some sense universal infinite-
dimensional variables exist is an intriguing question;
we know that no dual of a function space provides it.
The development of an ambitious multiplicity theory
for generalized operators may hopefully shed further

GEORGE SVETLICHNY

light on these problems and possibly facilitate the
development of infinite-dimensional calculus.

ACKNOWLEDGMENT

I am grateful to Professor A. S. Wightman for his
interest, help, and encouragement.

* Part of this work was done at Princeton University under an
NSF Graduate Fellowship and under Putnam Fellowship. I am
thankful for this financial support.

L A. S. Wightman, Phys. Rev. 101, 860 (1956).

2 R. F. Streater and A. S. Wightman, PCT, Spin and Statistics,
and All That (Benjamin, New York, 1964),

3 R. Jost, The General Theory of Quantized Fields (American
Mathematical Society, Providence, R.1., 1965).

1 A. M. Jaffe, Phys. Rev. 158, 1454 (1967).

5 K. O. Friedrichs, Perturbation of Spectra in Hilbert Space
(American Mathematical Society, Providence, R.1., 1965).

8 J. Glimm, Commun. Math. Phys. 5, 343 (1967).

7 J. Glimm, Commun. Math. Phys. 6, 61 (1967).

8 J. Glimm, Commun. Math. Phys. 10, 1 (1968).

( ?J. Glimm and A. M. Jaffe, Commun. Math. Phys. 11, 9
1968).

103, Glimm and A. M. Jaffe, Phys. Rev, 176, 1945 (1968).

111, M. Gel'fand and N. Ya. Vilenkin, Obobschennie Funktsii
(Moscow, 1961), Vol. 4, and also in the English translation General-
ized Functions (Academic, New York, 1964), Vol. 4.

32 5. K. Berberian, Notes on Spectral Theory (Van Nostrand,
New York, 1966); the relevant theorems are found in Chap. 4.

13 We note that, in both the case of projectivity and the case
of decomposability, whenever an indefinite metric is introduced,
then Ty is both symmetric and 7 symmetric; that is, we have both
(f, Trg) = (Tzf,g) and (f,Txg)y = (Trf,8)y for f and g in the
domain of 7g . To have a renormalized T which is 1 symmetric but
not symmetric requires the renormalized Hilbert space to have con-
tributions from singularities of R, that lie off the real axis; we have
not pursued this problem.

17, A. Shohat and J. D. Tomarkin, The Problem of Moments
(American Mathematical Society, Providence, R.I., 1943); we are
here making use of Lemma 2.1, p. 23.

15 See Ref. 14, Lemma 2.2, p. 24.



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11,

S Matrix in the Heisenberg Representation

EDITH BORIE*}
University of North Carolina, Chapel Hill, North Carolina 27514

(Received 25 May 1970)

The elements of the § matrix are calculated directly from an operator formalism, using the method
of Yang and Feldman. This method has the advantage of providing a simple and direct justification of
the Feynman rules for gauge fields, which express the contribution to the S matrix from a diagram
containing closed loops in terms of sums over lowest-order physical amplitudes (tree amplitudes) in
which all external lines are on the mass shell and have physical polarizations. This guarantees unitarity.
A condensed notation due to DeWitt is used. First, the one- and two-loop contributions to the amplitude
for production of a single quantum, and the amplitudes for pair production and scattering of a single
particle by a classical background field are calculated in the absence of an invariance group. Noncausal
chains (loops of cylically connected advanced or retarded Green’s functions) never appear at any stage
of the calculation, thus giving the decomposition into sums over tree amplitudes directly. This result is
then generalized in an obvious way to the case in which an invariance group is present. The amplitudes
are expressed in terms of a noncovariant propagator which propagates only physical (transverse) quanta.
Rewriting these expressions in terms of covariant propagators leads to the formal appearance of “ficti-
tious quanta,”” which compensate the nonphysical modes carried by these propagators. All results are in
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agreement with those obtained by other methods.

1. INTRODUCTION

In his study of the radiative corrections to gravity,
Feynman? proposed that the requirements of unitarity
could be met by the use of a technique for calculating
these corrections which is not obviously equivalent
to the usual Feynman rules. This method is based on
the decomposition of diagrams containing closed
loops into sums over tree amplitudes (lowest-order
physical scattering amplitudes) in which all external
lines are on the mass shell and have physical trans-
versality properties. This decomposition was accom-
plished by removing noncausal chains (loops of
cyclically connected advanced or retarded Green’s
functions) from all closed loops, and has the effect
of eliminating the longitudinal components of the
propagator. When only single closed loops are in-
volved, these amplitudes group themselves in an
obvious way into “Feynman baskets,” i.e., groups of
tree diagrams, each of which represents a complete
physical process. This decomposition guarantees
unitarity. In addition, the tree theorem of Feynman,
which states that the sum of all tree diagrams for a
given physical process is gauge invariant, can be used
to show that the radiative corrections are gauge
invariant. However, there are difficulties in extending
this procedure to the case in which two or more
closed loops are present.

The aim of this paper is to attempt to put the
justification of these rules on a firmer theoretical
footing by showing that they can be derived in a
straightforward manner from operator field theory
by using a generalization of the method of Yang and
Feldman.? Although the results agree with those

obtained previously by other methods,3=> this deriva-
tion has the advantage of maintaining a closer con-
nection with conventional field theory. Noncausal
chains never appear, and all amplitudes are expressed
in terms of propagators for transverse quanta only.
The treatment of more than one closed loop is
straightforward, although tedious.

A notation due to DeWitt®¢ is used, which is
sufficiently general to embrace all boson field theories,
yet also condensed enough to reduce the analysis to
manageable proportions.

We treat small disturbances on a classical back-
ground, which serves as a reference point about
which quantum fluctuations are assumed to take
place. This background plays an important role in
the analysis of virtual processes. By varying the back-
ground field, we can reproduce the effect of individual
quanta on a variety of fundamental processes, in-
cluding the laws of propagation, and all radiative
corrections. In addition, the use of a background
field eliminates the need to introduce external sources,
thus avoiding difficulties when a non-Abelian invari-
ance group is present.

In Sec. 2, the notation is briefly described, and
certain preliminary notions are introduced. Asymp-
totic fields and the corresponding creation and
annihilation operators are defined. With the aid of
these operators, it is possible to define “vacua’ in the
remote past and future, relative to the background
field, and to construct the incoming and outgoing
states which determine the S matrix.

The Yang-Feldman method and its application to
the calculation of some elements of the S matrix are
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described in Sec. 3. For simplicity, the presence of an
invariance group is ignored in order to focus attention
on the role of the Yang-Feldman method in yielding
automatically the splitting of normal Feynman
graphs into Feynman baskets. An iterative solution
of the operator field equations gives an expansion of
the outgoing fields in terms of the incoming fields,
and from this one obtains an expansion of the creation
and annihilation operators for outgoing states in
terms of the corresponding operators for incoming
states. The defining equation for the “relative vacua”
is used to determine the “vacuum’ in the remote
future as an expansion in terms of the incoming
states. We then determine the outgoing states as
superpositions of incoming states, and use the
orthonormality properties of the incoming states to
calculate the elements of the S matrix. The amplitudes
for one- and two-quantum production and for scatter-
ing of a single quantum by the background field are
explicitly calculated. These amplitudes have the form
of sums over tree amplitudes, and the results obtained
in lowest order are in agreement with those
obtained by DeWitt,® Fadeev and Popov,® and
Mandelstam.> The two-loop contribution to the
amplitude is calculated, and is found to be expressible
in terms of a functional derivative of the vacuum-to-
vacuum amplitude, provided that a certain extra
term, which was also used by DeWitt, is added to the
field equations. The relationship of the need for this
extra term to the removal of the noncausal chains is
discussed.

These results are generalized in an obvious way
for the case in which an invariance group is present
in Sec. 4. The procedure is the same as before, but it
is now necessary to introduce two distinct propagators,
both of which are defined relative to the background
field. One is manifestly covariant, but propagates
nonphysical as well as physical quanta; the other
propagates physical quanta only, but lacks manifest
covariance. Only the latter propagator enters into
the calculation of the S matrix, in accordance with
the tree theorem. When the amplitudes are re-
expressed in terms of the covariant propagator, it is
necessary to compensate the nonphysical modes by
introducing “fictitious quanta” which couple to real
quanta through asymmetric vertices which vanish
when the invariance group is Abelian, and which
appear only in closed loops.

2. NOTATION, ASYMPTOTIC FIELDS,
DEFINITION OF THE S MATRIX

In what follows, a number of definitions and
results from Ref. 3 will be used. The most important
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of these will be introduced as needed or given in
Appendix A, but the reader is referred to the above-
mentioned reference for a more complete discussion.

The field variables are assumed to be real and are
denoted by ¢’. Letters from the middle of the Greek
alphabet are used to denote space-time indices, while
letters from the beginning of the Greek alphabet are
reserved for group indices. Primes are used to dis-
tinguish different points of space-time, and also
appear on associated indices in order to avoid explicit
appearances of the space-time coordinates. In many
cases, the primes are suppressed, and the indices i, J,
etc., do double duty as discrete labels for the field
components and as continuous labels over the points
of space-time. The summation convention for
repeated indices is extended to include integrations
over the space-time variables. Thus, expressions such
as M,; are really elements of continuous matrices, and
the symbol §,; involves a 4-dimensional ¢ function.

Functional differentiation with respect to the field
variables is denoted by a comma followed by one
or more Latin indices. Thus, if S is the action func-
tional for the system, the field equations could be
written as

S;=0. 2.1)

For local theories, S ;; plays the role of a linear
differential operator with variable coefficients. The
higher functional derivatives are known as bare vertex
functions. They describe the basic interaction between
finite disturbances and vanish for linear theories.
Because of the commutativity of functional differ-
entiation, the bare vertices S ;. are completely
symmetric in their indices, and S ;; corresponds to
a self-adjoint linear operator.

The asymptotic forms of finite disturbances on a
classical background are defined by

¢:l:i = ¢z - Giij(s,j - S,jk¢k)
= ¢’ — G*[2)7'S ;ud'P’

+ G umd d'P™ + L (2.2)
where the G* are the advanced and retarded Green’s
functions of the operator S ,; (or of an associated
nonsingular operator F;, defined in Ref. 3, if an
invariance group is present) and the second part of
the equation is obtained from the first by a formal
expansion of the action about the background field ¢.
The asymptotic fields satisfy the equation for infinites-
imal disturbances,

S'ijq)ii = 0, (2.3)
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and iteration of Eq. (2.2) gives a formal solution to
the field equations

0=S.l¢+ $]
=S4 + V7S b’ "

+ (3!)_ls,ij1.~1¢j¢k¢l +
where the functional derivatives are evaluated at ¢,
which is a solution of S ;[¢] = 0.

If the background field vanishes (flat empty space-

time), the most general form for the asymptotic fields
is given by

24

&F = ulad +utat* + R (2.5)
where the asymptotic wavefunctions u’; satisfy
°S =0 (2.6)

and, in the presence of an invariance group, the
supplementary conditions

R’y = 0, °Fiul, = 0. 2.7

Here the capital Latin indices are used as schematic
labels for the states of the corresponding quanta.
Explicit forms for the u’, for the case of the Yang-
Mills and gravitational fields are given in Ref. 3.
These functions also satisfy the orthonormality
relations

— [ty 42, = =i {ubr oty a3, = o,
)3 X
—iLuj‘(so)';ju}} dz, = —iLuf( fupdZ, = 45,

—i[ueorozaz, =0 @8
z

where the hypersurface X is asymptotically spacelike,
but otherwise arbitrary, and the quantities s, and f
are the Green’s theorem operators associated with
the operators °S ;; and °F;;, respectively.

When the background field does not vanish, this
form is generalized to

¢* = filad + [T + RE®, (29)

where
= (1 + GEXHi?,, (2.10)
with the G being the advanced and retarded Green’s
functions in the absence of a background field, and
where :
Xt= (1 - UGHU (2.11a)
and
Ui = Fy; — °F;. (2.11b)

These quantities satisfy a long list of identities which
are given in Appendix A.
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The creation and annihilation operators e+* and
at are based on a separation of the total field into a
classical background ¢ and a quantum remainder ¢.
The classical background is assumed to contain a
finite amount of “energy”’, and hence it superposes
linearly with ¢ in the remote past and future and
disperses ultimately to a state of infinite weakness.
We may then write

@t = g e
with ¢+ given by Eq. (2.9).

We observe that we can write the commutator in
the form

[*, b= = iGY = fEfE* — f£4%, (2.13)

which follows immediately from Egs. (2.9), (2.10),
and (A8i), the commutation relations obeyed by the
o*, and from

¥ =0+ GEXH(1 + GIXT YT =fF 1 GU,
(2.14)

which is proved by making use of Egs. (A8i) and
(2.10).

The functions f+ are the basis functions for classical
waves, and they satisfy a set of orthonormality
relations which are similar to Egs. (2.8) and which
are given explicitly in Eq. (10.5) of Ref. 3.

The relative vacua |0, 4 00) are defined by

a0, 00y = 0. (2.15)

It should be stressed that the states |0, 4-o0) are
functionals of the classical background. Because the
background is capable of producing or absorbing any
number of quanta in individual elementary processes,
the two states are not identical.

Next we define incoming and outgoing states

(2.12)

|4y A,, £0) =aF* - af*|0, £ o). (2.16)

If the possibility of stable composite structures is
ignored, these form two complete orthogonal bases
in the physical Hilbert space.

The S matrix can now be defined relative to the
background field, with elements given by the ampli-
tudes

Ay, 40 |4y Ay, —o0). (217)

3. USE OF THE YANG-FELDMAN METHOD
FOR THE CALCULATION OF SCATTERING
AMPLITUDES

The basic idea of the Yang-Feldman method is to
obtain an iterative solution to the field equations in

terms of the asymptotic fields and to use this solution
to calculate the outgoing states as superpositions of



3490

the incoming states. The orthonormality properties
of the incoming states make it possible to obtain the
elements of the S matrix simply by taking the appro-
priate inner products and substituting our previously
calculated expansions.

In this chapter, we calculate the amplitudes for one-
and two-quantum production and for scattering of a
quantum by the background field. For the moment,
the presence of an invariance group is ignored in
order to focus attention on the problem of the
decomposition into Feynman baskets.

First, we write the outgoing ficlds ¢+ as an expan-
sionin terms of the incoming fields ¢—, using Eq. (1.2).
This gives

= = 4 (G- — G
(@Y7, "’
+ GD7S jund ™ + -]
= ¢ — GY2NTS jud P
+ 32 !)-ls,;'sz_kiS,fmn + NS il
X (¢7'd"p™" + TGP + ),
3.1

the second line following from the first by iteration.

Using Egs. (2.12), (2.13), (2.15), and (3.1) and the
orthonormality properties of the functions f*, we
obtain

o

i f i )

= —i[JE o + 5

- G* (2!)—ls,k1»n¢l¢m + ]} dz;l
= —i[ s + st

— GM(Uy(upag + upog®)

+ (2')—15 kl;)z¢l¢m + . )] dz
Ifi*"[ULl(”BaB + "B az%)

+ (2!)_15,7\'1m¢—l¢_m + ]
= (4 + a) 4525 + (B + b) 505"

+ B4 + Dypoag*ac + E pcopdc

+ F4poag*ac® + G popop*ac* ap

e
+ H_pcp%p acep

=a_1

+ I spopoipacer + J.iBC‘DaB*GE*GB* + -,
3.2)
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where U,; is given by Eq. (2.11b) and where

Ayp =045 + iu¥X;up, Bap=iu¥Xju¥,
a4 = 5 1Q2YS 1G S imn + B3D7S jrmal
X (f5f "™ + fefc*™f 5"
+ f*f B,
byp= U"Z*’[(Z!)‘IS,jsz“’“'S.fmn +@ !)_ls.ilmn]
X (fE "™ + e e*"f5*"
+ ST,
Ba = Hf5¥S S5 5%
= =318 (1 + Go X,
G(+)mn(1 + X+G+)£“

D pe = $f 4SS5 + £ 5%,
E po = ¥f S s f 515" (3.3)
F e = $if5*S s f 59 6™,
G.pep = ¥ I2D7'S 511G ™S imn + BD7'S jimal
x (f5*fc*"fp" + f*f5*"f D"
+ [l B,
H.ipep = I 312D7'S 110G ™S mn + V7S j1mn]

X (f3*f "o + 15"
+ 15 5" M,
Lipep = B AMI2YTS j0G 7S in + B3NS, i
X (fRfe™ " + /5" e,
Japep = fEIRY TS 0G5S i + BU7TIS jimn)
x (fg*fc*™fp*" + fo*f5*"fc*").

It can be shown that Eq. (3.2) is consistent with
the commutation rules for creation and annihilation
operators for free fields. If the expansion (3.2) and its
conjugate are inserted into the expressions for the
commutators of a* and a**, tedious algebra’ shows
that the commutation rules are satisfied provided the
o~ and o~ * satisfy them.

Next, we expand the outgoing “vacuum’ in terms
of the incoming states:

[0, + o0) =

+ 3 (M) C ey My -+ A,y = 0,

n=1

Co IO, - OO}

(3.4)

Substitution of this expansion and Eq. (3.2) into the
defining equation (2.14) for the state |0, 4 c0) gives
conditions which determine the coefficients C, .. 4
Once these have been calculated, we obtain the
elements of the S matrix by straightforward com-
putation of inner products between incoming and
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outgoing states. The conditions which we obtain are
= a [0, + )
= Zo(n!)—l[(ﬂACAr"An + A48CB4s 4
+ E 56Cp0ardan + LagopCronayan + %)
X |4y A,, —0)
+ (B4pCapan + DupcCouyan
+ HABCDCC’DAl"‘An + o ;) lBAl v An’ _w>
+ (F4pcCaran + GuonCparan + 7 )
X |BCA;,: - A,, —®©)
+ (JapepCaroan + 77

x |BCDA, -+ A,, —0) + - -]. (3.5)

An iterative method is used to obtain an approxi-
mate solution to the system of equations given in
(3.5). First, only the zero-order terms® are kept,
giving

n
0 —_
AABC BAy Ay + ZIBAAiCOAl"'Ai—lAi+1"'An = 0
1=

for each n. (3.6)
These can be solved exactly, with the result
COBAI“'A271 = 0,
___1 n+1 .
CoBAr"Aznn = (—_,,‘)—' 2 (4 1B)BA1
2"n!  perm
102041
X (A_IB)AQAA‘"(A_IB)AznA2n+1C0’ (37)
where
(A7'B) 45 = iu}’(1 — X~G{PY ™ X uk
= iul X fu3 (3.8)

is symmetric, so that the C, ..., are totally symmetric
in their indices, as would be expected.

These equations do not determine the vacuum-to-
vacuum amplitude

0, + |0, ) = C§f = ™4, 3.9

since the coefficients are determined only up to the
constant C, by Eqs. (2.5). However, only the vacuum-
to-vacuum probability is really of interest, the phase
of the amplitude being physically irrelevant. This can
be obtained from the normalization condition on the
state |0, + o0):
a0
1=(0,+0|0,+0) =Y nN"C*,..1,Cau,
n=0
~ |G, &t Triog -4 B (47" B)]
£ |Cof? ¢h 108 Act -G X GT0X ™), (3.10)

which is in agreement with previous results.?
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The zero-order expressions are next inserted back
into equations (3.5), and first-order terms are retained.
Details of some of the calculations are given in
Appendix B. The results to first order are

C4~ }f4'S 1 GT¥C,,
Cap=~ COAB = —(A7'B) 45Co,

Cupe = —(A7'B)45Cc — (A7'B)4cCs (3.11)
- (A_lB)BCCA - if;js,a'sz;;k :'lCm
Capop = C4pens
where
L=+ G X) . (3.12)

The first-order results are now inserted into Egs.
(3.5), and second-order terms are kept. The calcula-
tion is similar to the first-order calculation (and is
sketched for the case of C 5 in Appendix B), with the
result that

Cop™ —(A7B) 15Cy + C,CrCy"
— 3 XS G TS 1, G¥ S RRC,
+ F21R)TS j1G*S tmn + BD7S jimn)
X [G(—)*mnle + (G(—)*ml + G"’*“")f}g”]co.
(3.13)

The correction to C gy is given by a rather lengthy
expression in Ref. 7.

The third-order correction to C, is found in a
similar manner by a very lengthy but straightforward
computation and is also given in Ref. 7.

This procedure can in principle be continued to give
all the coefficients C .., to arbitrarily high order.
However, the number of terms one has to work with
increases rapidly with increasing order, and the
calculations become extremely lengthy. Those given
here or in Ref. 7 are sufficient for the computation
of the amplitudes for production of two quanta and
for scattering of a single particle by the background
field to second order (corresponding to a single
closed loop in the radiative corrections) and the
single-quantum production amplitude to third order
(corresponding to two closed loops).

The calculation of the single-quantum production
amplitude to lowest order is given in detail in Appendix
C as an example of how the calculations go. The result
is

(A, + 0|0, —o0) = —}CH4S ;1 G, (3.14)

where f= (1 + G,X)u*. This can be written in the
form

(4, + 00| 0, —o0) = ie'"fLW,,



3492

with

W, =~ S G, (3.15)

where the functional W[¢}] is defined in Eq. (3.8). This
is in agreement with previous results [cf. Eq. (17.2) of
Ref. 3].

The third-order contribution to the single-quantum
production amplitude is given by

<A’ @ I O, - w)
~ —%C:f-QS,,-“G(H“
OIS G g GI7S GG
- iic:fis.ilele,imnG"pS,M,,GH')mlG(““b
— %ic:fis_jle_kiS,imnG"ﬂS'mbGH)lmGH—)ab
— HC¥ IS j1nG™S pyGH™ GNP
- _%ic:fjis,jszkiS,imn,,G(+)mG(+)""
— iic:f'is,jle—kiS,iman(-HlmGH)np
— %icgfis‘mmnG(+)le(+)mn
- —é—iC{,"fiS,nmnG"T’S'Mb(;H)amGH)bz
— LHCHUS 11mnG S GG L G
— i.ic(;l‘fjls'jlekiS.im"anS’mbG(HamG(-;—)m
- %lC:fZS JlekiS lmnG“"ﬁ’S pab G(+)maG(+)bl
- ilc fA-A JWG—MS imnG_n S , pab
X (G(+)"‘“ + G(+)GM)G(+)lb
—_ iic:fis,jkLG_kiS,imnGlpS,pabGH)amG(-an- (3.16)

This is almost, but not quite, expressible in the form
e f4,W ;. What is missing is a term having the
following structure:

—%iC4S, 4GS 1mnG ™S G YG™,  (3.17)

Such a term would come from adding to the right-
hand side of the operator field equations (2.4) a term
of the form

728,iG 7S 4GS paGTG™  (3.18)

and a corresponding term to the definition of the
asymptotic fields (2.2). If this term is added, we obtain
the following expression for W ;:

W, ~ }iS
E(S klmn
— T?(S,zmnG"pS,mbG(HmGH)"’
+ S,lmnG—nmS,mb(GH-)am + G("'“”“)G(“”')_j.
(3.19)

This same extra term had to be added to the field
equations by DeWitt in order to be able to write them

G(+)kl_ %(S m"Glp
G(+)Ich(+)mn) ;

pab),

EDITH BORIE

in the form
0=T{S;:l¢g +b] — i(ln Alg +P)) ;}-

It is also obtained when one explicitly removes the
noncausal chains from the normal Feynman graphs.
Since one expects that particle production amplitudes
are obtained by functional differentiation of the
vacuum diagrams and since the removal of the non-
causal chains does not affect this relationship, it is
perhaps not too surprising to find that it must be
added in this case also. The expression for W[¢]
obtained by functional integration of Eq. (3.19) is the
same as the corresponding expression obtained by
DeWitt. It is given in diagram form, following the
conventions of that paper in Fig. 1. However, DeWitt
showed that still another term Y{,, must be added to
the field equations in order (i) to complete the decom-
position into Feynman baskets and (ii) to guarantee
invariance of the theory under a change of variables.
This term does not come automatically either from
his calculation or from the present work. There is no
difficulty in including it in the operator field equations
of the Yang-Feldman formalism, and there are good
consistency arguments for doing so. However, it
cannot at the present time be said to emerge at a
fundamental level, e.g., from a canonical formalism.
We now proceed to the calculation of the two-
quantum production amplitude and the amplitude
for scattering of a single quantum by the background
field. After a rather lengthy but straightforward
calculation, we obtain, for pair production,

(3.20)

(AA', + , 0, — o)
=~ iCFuRX ¥ + YCI4S 3G LS
ACHAS G S o + S )G
~ 3Cf 4SS 5G¥S ima GH™ + G
— 1G4S 28 G i G,

G(+)mn

(3.21)

n]-

ml—
am—

+O0 OO
O O

FiG. 1. Vacuum diagram in absence of an invariance group. Lines
bearing arrows represent quanta on the mass shell.

<m—
ml—
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which agrees with previous results and which can be
written in the form

(AA', + 0|0, — o)
= ie”ru;por“f + fi{f‘{i’(ei”’),u . (322)

with W given approximately by (3.15).
Similarly, we obtain, for scattering,

(A, + 0| A', — )
= C5(0 440 + XX ,0Ul4)
+ 1C¥4S 3G Y YS imnG ™"
— 3C3f h'(s,jszkiS_imn + S_jZMn)G(+)mn
— %C:f-j;fg's,jlekiS'z‘mn(G(+)Ml + G(+)lm)
— 3CH U f 5 S G S (G, (3.23)

which also agrees with previous results. It is seen that
the radiative corrections for scattering differ from
those for pair production only in the modification
of the external line wavefunctions to suit the process
being considered.

The formal results given above apply to any boson
field theory. They have been checked, in lowest order,
for the case of scalar fields with self-coupling by
explicit computation of the relevant amplitudes.!® The
result obtained by calculating the amplitude as given
in Eq. (3.22) is the same as that obtained by applying
the usual Feynman rules.

4. GENERALIZATION TO THE CASE IN
WHICH AN INVARIANCE GROUP IS
PRESENT

It is not difficult to generalize the previous results
to the case in which an invariance group is present.
Equation (3.1) is unaffected, and Eq. (3.2) is modified
only in the fact that the functions iGy" which appear
in the expressions for 84, a4z, and b 4 are replaced by
their projections into the physical subspace iGy" (see
Appendix A). This occurs because only products of
the form wuu' appear in any of the calculations.
Repeating the previous calculations, but using Egs.
(A10) instead of Eqgs. (A8), we obtain, to second order,

Cy~ —*}ﬁis.jkz@mmco,
Cyp =~ —(A7'B)15Co + C4C5C3’
+ 3G 1AS 3a® TS &L
— FYAl@D) TS 3G s + BH7'S jima]
X [(5(+)*mn f}}
+ (®(+)*ml + ®(+)*lm)ff;3]C0,
Canc~ —(A7'B),3Cc — (A7B)4cCp

— (A7B)poCa — if14S wft6l ¢ (4.1)
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with
d (A7'B)4p = WPE2 Y (4.2)
an
fo =1+ Gt u. 4.3)

These two functions differ only by a gauge transforma-
tion, and uf(X. — X_)u* = 0, so that the plus and
minus signs are physically irrelevant.

To lowest order, the amplitude for single-quantum
production is given by

(A, + 0| 0, —0) =~ —4CH1 45, 6%, (4.4)
which differs from the result for the case in which no
group was present only in the replacement of G by
% and of the function f by its generalization f,.
As has been shown by DeWitt, this is also equal to

ACH I LIS juGHM = RE Rf(GH* 4 GHFe)]
= —%C:fiA[S'jle(_H” —_ (V(m')ﬂ + V(ﬂi)a) G(+)aﬂ],
4.5)

where G is the propagator for fictitious quanta and
where

Viairg = RZi.,-Rw : (4.6)

We obtain the two-quantum production amplitude
in a similar manner. The result is

(AA’, + 0| 0, — o)
= iCg usz-l—pru;.r’
+ 1CoT4S 18 S ima® ™
= GRS 5658 imn + B)7'S umal
X (®(+)mnﬂ_‘4'(®(+)ml + ®(+nm)f.’:-A')
= ACTaS S i@ s (A7)
Again, this differs from (3.21) only in the replacement
of G’ by G and of f by f.. This result was also
obtained by DeWitt. The re-expression of (4.7) in
terms of the covariant propagators and the resulting
terms involving the fictitious quanta are given in Ref. 3.
This calculation verifies explicitly that, at least in
lowest order, the elements of the S matrix in the
presence of an invariance group can be obtained
from the corresponding expressions in the absence of
a group simply by replacing the propagators G+ by
& everywhere and using suitably generalized
external line wavefunctions. The calculation also
indicates that this should be true for higher orders
as well. Since the amplitudes have already been
decomposed into Feynman baskets, the radiative
corrections are automatically expressed in terms of
sums over tree amplitudes. Hence the results are
automatically unitary and, by the tree theorem, also
gauge invariant. The use of physical gravitons in the
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sums over the tree amplitudes introduces a non-
relativistic element into the theory. However, the
expressions can always be converted to manifestly
covariant form, provided that one introduces the
fictitious quanta to compensate the unphysical modes
which are carried by the covariant propagator. The
necessity for doing this arises in a completely natural
way when one calculates the amplitudes with the
Yang-Feldman method.
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APPENDIX A

For the convenience of the reader, we list here a
number of useful identities which are given in Ref. 3
and which are needed in the present calculation.

By (2.11) we have

Ui;i = Fz'j - OFi,-,

and
F= (1 —UGH'U = (1 + X*GHU.

From the self-adjointness of °F;; it follows that
G¥ = G,” and hence that

X4 = X5
We define the positive energy function Gyt by

(A1)

iGSTY = uluX’ + RN} R},
+ ReiNY Ry (A2)
and the negative energy function G5~ by

Gy = (A3)

It is convenient to introduce a special symbol for the
projection of the positive energy function into the
physical subspace (this is necessary only if an invari-
ance group is present), which we define by

. *
IG5 = wtul.

We note that,in the absence of an invariance group,
G = 6.

G1()+)*ij = — G(()+)J'i.

In quantum theory, -a dominant role is played by
the Feynman propagator, which for zero background
fields is defined by

—G§{PY i to the future of j

i
Go = {+G§,‘”" j to the future of i

= G5 F G5 = G}. (AS)
Just as we defined X%, we have
X=(0-=UG)WU = (1 + XGyU, (A6)

With Xi]' = in.

(A4) .

EDITH BORIE

The values for the retarded and advanced Green’s
functions and for the Feynman propagator for a non-
zero background field are given in terms of their values
for zero background field by

G = Go(1 — UGy)™ = Gy + GoXG,,
G* = GE(1 — UGH)™ = GF + GEX*GE. (A7)

These quantities satisfy a number of identities which
may be obtained by straightforward manipulation of
the defining equations. We list a few of them here:

= (1 £ X*G{&)1x=, (A8a)
(1+ X*G‘i’)‘l =1F XG{*, (A8b)
14 XGy = (1 F XGS)(1 + X*G?E), (ASe)
G=G"-G =1+ GXHG,(1 + X*GF), (A8d)
if G = G* F G, then
G* = (1 + GEX*Gi (1 + XG,)

= (1 + G,X)GF'(1 + X*GS), (A8e)
Xt — X" =UGU = X*G, X~ = X~G,X*, (ASf)
X — X* = X(G — G§HX*, (A8g)
X* =11 + XG5 — G§NH1r'x, (A8h)
(1 + GEXH(A + GFxH™

=1+ (1 4+ GeX*)(G5 — GHU
=1+ G + X7GH'U, (A8i)
G = G (AS8))

In the theory of the S matrix, the function G plays
the role of propagator of field quanta. If an invariance
group is present, this function propagates non-
physical as well as physical quanta. It is useful to
introduce alternative functions which propagate real
quanta only. They are defined by

G, = Gi F 67 (A9)
These quantities satisfy a list of identities similar
to those of Eqs. (A8). They are

go= Gk, (A10a)

X, =(1— UG U =(1 £ X*G¢")'X*, (Al0b)
X =%_j, (A10c)

(1 + X*6&) ™ = 1 F X,66, (A10d)

1+ X.60. = (1 F X.65)(1 + X*G5), (Al0e)
Gy = Gpu(l — UGe)™ = G F 6%, (A10f)
whence
G = a+ Gix:}:)(ﬁ(i)(l + X,60.)
=1 + G X)G(1 + XEGY).
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APPENDIX B

An explicit calculation of the coefficient C, and
brief sketch of the calculations of C 5 and C, g are
given here.

From Eq. (3.5) we deduce

0=p8,Co+ (4 + a)15Cp + EspcCre
+ LipepCpep + 77

0=p3,Cp+ (4+ a)ycCop + EspcConn

+ LicpeCoprn + (B + 0)45Co + D ipcCe

+ HipepCeop + 7 (B1b)
0=p8,Cpo+ (4 + a)apCppc + EaprCrrnC

+ LiperCorrpe + (B + b)45Cc

+ (B + 0)4¢Cr + D45pCpc + D4onChr

+ HppeCorn + (Fape + Facn)Co

(Bla)

+ (Gapep + Gacp)Co + (Blc)
etc.
Then to first order from Eq. (Bla) we have
C4= (B — Egop(A™'B)cp)Co, (B2a)

and from (Blc)
Cipoc~ —(A7'B)45Cc — (A7'B) 4¢Cp
+ AZp(Bp — Epgr(A7'B)gr)Co(A7B)pc
+ AZp[2Fppc — Dppe(A™B)ge
~ Dpor(A7B)gp + 2Eppr(A ' B)pr(A7'B)¢r]
(B2b)

and nothing new to this order for C,;. Using Eq.
{A8a), we find that

A7 = (1 + i XUy
=1—iu'Xu— i XGHXxu

— ' X G Xu — -
=1—iu'X(1 — G{"X )
=1—iu"X*u. (B3)

Therefore,
AZRfEY = Bap — W*5XFuphy(1 + X~Gy);
= u’(1 + X*G3), = f¥, (B4)
where Eq. (A8c) has been used in obtaining the second
line from the first.

Substituting the explicit forms given in Eq. (3.3)
into (B2a) and using Egs. (B4) and (A8c), (A8e), we
obtain for C,

Ca= —HAZRfEY S 1 + GX ),
x (iGgH™" + iGEH™ X 5. Go™)(1 + X*G{),Co
= }f 'S (1 + GoX ), GsP™
x (1 — X*GSHx1 + XTGHLC,

= %f;js.jkzc(_)*klco . (B3S)
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In calculating C 3¢, we make the same kind of
substitutions and go through the same manipulations.
This is only necessary for the last term of (B2b) (the
one insquare brackets), since the other one that is not
already calculated is easily recognized to be equal to
—(A7'B)pcCy-

The calculation of C, is similar. We give here the
equation which determines it to second order and the
first and last steps of the calculations:

Vanishing of the coefficient of |B, o) in Eq. (3.5)
implies that

0=pf,4Cp+ (4 + a)4cCop + (B + b)45C,

+ E4sc0Conp + LicpeCoprn + DancCo

+ HpepCpe + 7 (B6)
so that
Cap~ —(A7'B)45C,

— Azp(BpCs + DppcCo + EpceCongp)

- A:IID(bDB — apo(A7'B)cp

— Hppor(A7'B)or + $porr

x Y (A—IB)C’E(A_IB)FB)CO

perm
CEF

= —(A—IB)ABCO + CACBCEI
+ lﬁf;is,ile(—)*kiS.imn
X [G(—)*mnf-;l + G(—)*lm ;H]CO
+ 12N TS 511G ™S tmn + BD7'S jimal
x [G(—)*mnf};l + (G(—)*Im + G(—)*ml)f;n]co.

(B7)
APPENDIX C

We present here a detailed calculation of the single-
quantum production amplitude to lowest order.

By Eqgs. (3.2) and (3.4), we have for single-quantum
production

(A, 400 |0, —o0)
= {0, + 0| a’; |0, — c0)
= B4Cs + B4xCE + @Y 'FupcChe + Cop)
+ Y Yanen 2 Chep + . (C1)

perm

Using the explicit expressions for the various
coefficients, as given by (3.3), (3.10), and (3.12), and
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Eqgs. (A8Db), (A8c), and (A8e), we obtain, in first order,

(A, + 0 l 09 - w>
~ B4Co + B4pCh + Fypo(A7'B)5cCo
= Cy[—3/3%S (1 + GeXEGEP™ (1 + XTGP,

= —3CHu¥[(1 + X~G5)iS ;1 + Gs XN,

- %“sz;rct(;r)mr(l + XGo)ZnS.jsz(_)kl
+ 3378 1 + GoX ),
X G(()H”MXMG(()Hm(l + X+G0+)i,]

X (L 4+ G X)PGEI™(1 + X*GYy,
+ X5 G0 + XGo)pS 5G]
—3Coull(1 + X~Gy)}

+ X5G5™1 + XG)31S ;G
—3CHUE(1 + XGp)iS, 1 GHH
—3CHf4S, G

(€2)
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? Compare this result

(e 1m W = |Cy[2 = exp {—} log det [1 — (A~ B)*(4-B)]))

with Eq. (16.20) of Ref. 3, noting that A=1B = int X*u* = iAT.
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